Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio 45229, USA.
Antioxid Redox Signal. 2012 Oct 15;17(8):1083-98. doi: 10.1089/ars.2011.4417. Epub 2012 Jun 25.
Insulin resistance is a hallmark of obesity and type 2 diabetes. Reactive oxygen species (ROS) have been proposed to play a causal role in insulin resistance. However, evidence linking ROS to insulin resistance in disease settings has been scant. Since both oxidative stress and diabetes have been observed in patients with the Fanconi anemia (FA), we sought to investigate the link between ROS and insulin resistance in this unique disease model.
Mice deficient for the Fanconi anemia complementation group A (Fanca) or Fanconi anemia complementation group C (Fancc) gene seem to be diabetes-prone, as manifested by significant hyperglycemia and hyperinsulinemia, and rapid weight gain when fed with a high-fat diet. These phenotypic features of insulin resistance are characterized by two critical events in insulin signaling: a reduction in tyrosine phosphorylation of the insulin receptor (IR) and an increase in inhibitory serine phosphorylation of the IR substrate-1 in the liver, muscle, and fat tissues from the insulin-challenged FA mice. High levels of ROS, spontaneously accumulated or generated by tumor necrosis factor alpha in these insulin-sensitive tissues of FA mice, were shown to underlie the FA insulin resistance. Treatment of FA mice with the natural anti-oxidant Quercetin restores IR signaling and ameliorates the diabetes- and obesity-prone phenotypes. Finally, pairwise screen identifies protein-tyrosine phosphatase (PTP)-α and stress kinase double-stranded RNA-dependent protein kinase (PKR) that mediate the ROS effect on FA insulin resistance.
These findings establish a pathogenic and mechanistic link between ROS and insulin resistance in a unique human disease setting.
ROS accumulation contributes to the insulin resistance in FA deficiency by targeting both PTP-α and PKR.
胰岛素抵抗是肥胖和 2 型糖尿病的标志。活性氧(ROS)被认为在胰岛素抵抗中起因果作用。然而,将 ROS 与疾病状态下的胰岛素抵抗联系起来的证据很少。由于氧化性应激和糖尿病均存在于范可尼贫血(FA)患者中,因此我们试图在这种独特的疾病模型中研究 ROS 与胰岛素抵抗之间的联系。
缺乏范可尼贫血互补组 A(Fanca)或 Fanconi 贫血互补组 C(Fancc)基因的小鼠似乎易患糖尿病,表现为高血糖和高胰岛素血症,以及高脂饮食喂养时体重迅速增加。这些胰岛素抵抗的表型特征的特点是胰岛素信号中的两个关键事件:胰岛素受体(IR)的酪氨酸磷酸化减少和肝脏、肌肉和脂肪组织中胰岛素底物-1的抑制性丝氨酸磷酸化增加来自胰岛素挑战的 FA 小鼠。在这些胰岛素敏感组织中,自发积累或肿瘤坏死因子α产生的高水平 ROS 是 FA 胰岛素抵抗的基础。用天然抗氧化剂槲皮素治疗 FA 小鼠可恢复 IR 信号并改善糖尿病和肥胖倾向表型。最后,成对筛选确定了蛋白酪氨酸磷酸酶(PTP)-α和应激激酶双链 RNA 依赖性蛋白激酶(PKR),它们介导 ROS 对 FA 胰岛素抵抗的作用。
这些发现确立了 ROS 与独特人类疾病环境中胰岛素抵抗之间的发病机制和机制联系。
ROS 的积累通过靶向 PTP-α 和 PKR 导致 FA 缺乏中的胰岛素抵抗。