Suppr超能文献

模型构建原理:一种用于信号网络模型开发的实验辅助方法。

Principles of model building: an experimentation-aided approach to development of models for signaling networks.

作者信息

Ganesan Ambhighainath, Levchenko Andre

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, USA.

出版信息

Methods Cell Biol. 2012;110:1-17. doi: 10.1016/B978-0-12-388403-9.00001-1.

Abstract

Living cells continuously probe their environment and respond to a multitude of external cues. The information about the environment is carried by signaling cascades that act as "internal transducing and computing modules," coupled into complex and interconnected networks. A comprehensive understanding of how cells make decisions therefore necessitates a sound theoretical framework, which can be achieved through mathematical modeling of the signaling networks. In this chapter, we conceptually describe the typical workflow involved in building mathematical models that are motivated by and are developed in a tight integration with experimental analysis. In particular, we delineate the steps involved in a generic, iterative experimentation-driven model-building process, both through informal discussion and using a recently published study as an example. Experiments guide the initial development of mathematical models, including choice of appropriate template model and parameter revision. The model can then be used to generate and test hypotheses quickly and inexpensively, aiding in judicious design of future experiments. These experiments, in turn, are used to update the model. The model developed at the end of this exercise not only predicts functional behavior of the system under study but also provides insight into the biophysical underpinnings of signaling networks.

摘要

活细胞不断探测其周围环境,并对众多外部信号作出反应。有关环境的信息由充当“内部转导和计算模块”的信号级联传递,这些信号级联耦合到复杂且相互连接的网络中。因此,要全面理解细胞如何做出决策,就需要一个完善的理论框架,这可以通过对信号网络进行数学建模来实现。在本章中,我们从概念上描述构建数学模型所涉及的典型工作流程,这些模型的构建基于实验分析并与实验分析紧密结合进行开发。特别是,我们通过非正式讨论并以最近发表的一项研究为例,阐述了通用的、由实验驱动的迭代模型构建过程中所涉及的步骤。实验指导数学模型的初始开发,包括选择合适的模板模型和参数修正。然后,该模型可用于快速且低成本地生成和检验假设,有助于明智地设计未来的实验。反过来,这些实验又用于更新模型。在这个过程结束时开发的模型不仅可以预测所研究系统的功能行为,还能深入了解信号网络的生物物理基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验