Aswani Anil, Biggin Mark D, Bickel Peter, Tomlin Claire
Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, California, USA.
Methods Cell Biol. 2012;110:243-61. doi: 10.1016/B978-0-12-388403-9.00010-2.
Because of the increasing diversity of data sets and measurement techniques in biology, a growing spectrum of modeling methods is being developed. It is generally recognized that it is critical to pick the appropriate method to exploit the amount and type of biological data available for a given system. Here, we describe a method for use in situations where temporal data from a network is collected over multiple time points, and in which little prior information is available about the interactions, mathematical structure, and statistical distribution of the network. Our method results in models that we term Nonparametric exterior derivative estimation Ordinary Differential Equation (NODE) model's. We illustrate the method's utility using spatiotemporal gene expression data from Drosophila melanogaster embryos. We demonstrate that the NODE model's use of the temporal characteristics of the network leads to quantifiable improvements in its predictive ability over nontemporal models that only rely on the spatial characteristics of the data. The NODE model provides exploratory visualizations of network behavior and structure, which can identify features that suggest additional experiments. A new extension is also presented that uses the NODE model to generate a comb diagram, a figure that presents a list of possible network structures ranked by plausibility. By being able to quantify a continuum of interaction likelihoods, this helps to direct future experiments.
由于生物学中数据集和测量技术的多样性不断增加,越来越多的建模方法正在被开发出来。人们普遍认识到,选择合适的方法来利用给定系统可用的生物数据的数量和类型至关重要。在这里,我们描述一种用于以下情况的方法:从网络收集多个时间点的时间数据,并且对于网络的相互作用、数学结构和统计分布几乎没有先验信息。我们的方法产生的模型我们称之为非参数外微分估计常微分方程(NODE)模型。我们使用黑腹果蝇胚胎的时空基因表达数据来说明该方法的实用性。我们证明,NODE模型对网络时间特征的使用导致其预测能力相对于仅依赖数据空间特征的非时间模型有可量化的提高。NODE模型提供了网络行为和结构的探索性可视化,可识别出表明需要进行额外实验的特征。还提出了一种新的扩展,即使用NODE模型生成梳状图,该图呈现了按合理性排序的可能网络结构列表。通过能够量化相互作用可能性的连续统,这有助于指导未来的实验。