School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom.
ACS Nano. 2012 May 22;6(5):3943-53. doi: 10.1021/nn300137j. Epub 2012 Apr 18.
Carbon nanotubes (CNTs) act as efficient nanoreactors, templating the assembly of sulfur-terminated graphene nanoribbons (S-GNRs) with different sizes, structures, and conformations. Spontaneous formation of nanoribbons from small sulfur-containing molecules is efficiently triggered by heat treatment or by an 80 keV electron beam. S-GNRs form readily in CNTs with internal diameters between 1 and 2 nm. Outside of this optimum range, nanotubes narrower than 1 nm do not have sufficient space to accommodate the 2D structure of S-GNRs, while nanotubes wider than 2 nm do not provide efficient confinement for unidirectional S-GNR growth, thus neither can support nanoribbon formation. Theoretical calculations show that the thermodynamic stability of nanoribbons is dependent on the S-GNR edge structure and, to a lesser extent, the width of the nanoribbon. For nanoribbons of similar widths, the polythiaperipolycene-type edges of zigzag S-GNRs are more stable than the polythiophene-type edges of armchair S-GNRs. Both the edge structure and the width define the electronic properties of S-GNRs which can vary widely from metallic to semiconductor to insulator. The encapsulated S-GNRs exhibit diverse dynamic behavior, including rotation, translation, and helical twisting inside the nanotube, which offers a mechanism for control of the electronic properties of the graphene nanoribbon via confinement at the nanoscale.
碳纳米管(CNTs)作为高效的纳米反应器,模板组装出具有不同尺寸、结构和构象的硫终止石墨烯纳米带(S-GNRs)。通过热处理或 80keV 电子束可以有效地触发从小的含硫分子自发形成纳米带。S-GNRs 很容易在直径为 1 到 2nm 的 CNT 中形成。在这个最佳范围之外,直径小于 1nm 的纳米管没有足够的空间来容纳 S-GNR 的 2D 结构,而直径大于 2nm 的纳米管不能为单方向 S-GNR 生长提供有效的限制,因此都不能支持纳米带的形成。理论计算表明,纳米带的热力学稳定性取决于 S-GNR 的边缘结构,以及纳米带的宽度。对于类似宽度的纳米带,锯齿形 S-GNR 的聚硫代聚对亚苯基型边缘比扶手椅形 S-GNR 的聚噻吩型边缘更稳定。边缘结构和宽度共同定义了 S-GNR 的电子性质,其范围从金属到半导体到绝缘体变化很大。封装的 S-GNR 表现出多种动态行为,包括在纳米管内的旋转、平移和螺旋扭曲,这为通过纳米尺度的限制来控制石墨烯纳米带的电子性质提供了一种机制。