Laboratory of Physical Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Talanta. 2012 May 15;93:279-84. doi: 10.1016/j.talanta.2012.02.034. Epub 2012 Feb 22.
A simple approach for retention modeling of solutes under pH-gradient conditions at various organic contents in the mobile phase is proposed. This approach is based on a retention model arising from the evaluation of the retention data of a set of 17 OPA derivatives of amino acids obtained in two series of 22 pH-gradient runs performed between a given initial and final pH value (between 2.8 and 10.7 or 3.2 and 9.0) with different gradient duration and with different organic modifier content in the eluent. The derived model is a fifth-parameter equation easily manageable through a linear least-squares fitting. It requires only 6 initial pH-gradient experiments, allows a very satisfactory prediction for various pH-changes of the same kind with those used in the fitting procedure and seems to be very promising in separation optimization under pH-gradient conditions. The pH-gradient method appears to be especially suitable and effective for separation of amino acid derivatives whereas the application of pH-gradients from 3.2 to 9.0 proved to be beneficial.
提出了一种在不同有机相含量下的 pH 梯度条件下保留溶质的简单建模方法。该方法基于从两个系列的 22 个 pH 梯度运行中获得的 17 个 OPA 氨基酸衍生物的保留数据评估得出的保留模型,该两个系列的 pH 梯度运行在给定的初始和最终 pH 值(在 2.8 和 10.7 或 3.2 和 9.0 之间)之间进行,具有不同的梯度持续时间和不同的洗脱液中有机改性剂含量。所得模型是一个五参数方程,通过线性最小二乘法拟合可轻松处理。它仅需要 6 个初始 pH 梯度实验,对于与拟合过程中使用的相同种类的各种 pH 变化具有非常令人满意的预测能力,并且在 pH 梯度条件下的分离优化中似乎非常有前途。pH 梯度法特别适用于氨基酸衍生物的分离,而从 3.2 到 9.0 的 pH 梯度的应用则被证明是有益的。