Suppr超能文献

均匀密度多元尺度混合的非参数估计。

Nonparametric estimation of multivariate scale mixtures of uniform densities.

作者信息

Pavlides Marios G, Wellner Jon A

机构信息

Centre for Statistical Science and Operational Research, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, UK.

出版信息

J Multivar Anal. 2012 May;107:71-89. doi: 10.1016/j.jmva.2012.01.001. Epub 2012 Jan 10.

Abstract

Suppose that U = (U(1), … , U(d)) has a Uniform (0, 1) distribution, that Y = (Y(1), … , Y(d)) has the distribution G on [Formula: see text], and let X = (X(1), … , X(d)) = (U(1)Y(1), … , U(d)Y(d)). The resulting class of distributions of X (as G varies over all distributions on [Formula: see text]) is called the Scale Mixture of Uniforms class of distributions, and the corresponding class of densities on [Formula: see text] is denoted by [Formula: see text]. We study maximum likelihood estimation in the family [Formula: see text]. We prove existence of the MLE, establish Fenchel characterizations, and prove strong consistency of the almost surely unique maximum likelihood estimator (MLE) in [Formula: see text]. We also provide an asymptotic minimax lower bound for estimating the functional f ↦ f(x) under reasonable differentiability assumptions on f ∈ [Formula: see text] in a neighborhood of x. We conclude the paper with discussion, conjectures and open problems pertaining to global and local rates of convergence of the MLE.

摘要

假设(U=(U(1),\ldots,U(d)))具有([0,1]^d)上的均匀分布,(Y=(Y(1),\ldots,Y(d)))在(\mathbb{R}^d)上具有分布(G),并且令(X=(X(1),\ldots,X(d))=(U(1)Y(1),\ldots,U(d)Y(d)))。(X)的所得分布类(随着(G)在(\mathbb{R}^d)上的所有分布中变化)称为均匀分布的尺度混合分布类,并且在(\mathbb{R}^d)上相应的密度类记为(\mathcal{P})。我们研究族(\mathcal{P})中的最大似然估计。我们证明了最大似然估计(MLE)的存在性,建立了芬切尔特征,并证明了(\mathcal{P})中几乎必然唯一的最大似然估计器(MLE)的强一致性。我们还在关于(f\in\mathcal{P})在(x)的邻域内的合理可微性假设下,为估计泛函(f\mapsto f(x))提供了一个渐近极小极大下界。我们在论文结尾讨论了与最大似然估计器的全局和局部收敛速率相关的猜想和未解决问题。

相似文献

1
Nonparametric estimation of multivariate scale mixtures of uniform densities.均匀密度多元尺度混合的非参数估计。
J Multivar Anal. 2012 May;107:71-89. doi: 10.1016/j.jmva.2012.01.001. Epub 2012 Jan 10.
4
The MLE of the uniform distribution with right-censored data.右删失数据下均匀分布的极大似然估计。
Lifetime Data Anal. 2021 Oct;27(4):662-678. doi: 10.1007/s10985-021-09528-2. Epub 2021 Jul 25.
5
Minimax Estimation of Functionals of Discrete Distributions.离散分布泛函的极小极大估计
IEEE Trans Inf Theory. 2015 May;61(5):2835-2885. doi: 10.1109/tit.2015.2412945. Epub 2015 Mar 13.
7
A method for estimating the power of moments.一种估计矩量法功效的方法。
J Inequal Appl. 2018;2018(1):54. doi: 10.1186/s13660-018-1645-7. Epub 2018 Mar 6.
10
Nonparametric e-Mixture Estimation.非参数e混合估计
Neural Comput. 2016 Dec;28(12):2687-2725. doi: 10.1162/NECO_a_00888. Epub 2016 Sep 14.

本文引用的文献

1
ON THE GRENANDER ESTIMATOR AT ZERO.关于零处的格伦南德估计量。
Stat Sin. 2011 Apr;21(2):873-899. doi: 10.5705/ss.2011.038a.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验