Pavlides Marios G, Wellner Jon A
Centre for Statistical Science and Operational Research, Queen's University Belfast, Belfast BT7 1NN, Northern Ireland, UK.
J Multivar Anal. 2012 May;107:71-89. doi: 10.1016/j.jmva.2012.01.001. Epub 2012 Jan 10.
Suppose that U = (U(1), … , U(d)) has a Uniform (0, 1) distribution, that Y = (Y(1), … , Y(d)) has the distribution G on [Formula: see text], and let X = (X(1), … , X(d)) = (U(1)Y(1), … , U(d)Y(d)). The resulting class of distributions of X (as G varies over all distributions on [Formula: see text]) is called the Scale Mixture of Uniforms class of distributions, and the corresponding class of densities on [Formula: see text] is denoted by [Formula: see text]. We study maximum likelihood estimation in the family [Formula: see text]. We prove existence of the MLE, establish Fenchel characterizations, and prove strong consistency of the almost surely unique maximum likelihood estimator (MLE) in [Formula: see text]. We also provide an asymptotic minimax lower bound for estimating the functional f ↦ f(x) under reasonable differentiability assumptions on f ∈ [Formula: see text] in a neighborhood of x. We conclude the paper with discussion, conjectures and open problems pertaining to global and local rates of convergence of the MLE.
假设(U=(U(1),\ldots,U(d)))具有([0,1]^d)上的均匀分布,(Y=(Y(1),\ldots,Y(d)))在(\mathbb{R}^d)上具有分布(G),并且令(X=(X(1),\ldots,X(d))=(U(1)Y(1),\ldots,U(d)Y(d)))。(X)的所得分布类(随着(G)在(\mathbb{R}^d)上的所有分布中变化)称为均匀分布的尺度混合分布类,并且在(\mathbb{R}^d)上相应的密度类记为(\mathcal{P})。我们研究族(\mathcal{P})中的最大似然估计。我们证明了最大似然估计(MLE)的存在性,建立了芬切尔特征,并证明了(\mathcal{P})中几乎必然唯一的最大似然估计器(MLE)的强一致性。我们还在关于(f\in\mathcal{P})在(x)的邻域内的合理可微性假设下,为估计泛函(f\mapsto f(x))提供了一个渐近极小极大下界。我们在论文结尾讨论了与最大似然估计器的全局和局部收敛速率相关的猜想和未解决问题。