Suppr超能文献

梯度森林:计算物理预测因子上的重要性梯度。

Gradient forests: calculating importance gradients on physical predictors.

机构信息

CSIRO Marine and Atmospheric Research, Ecosciences Precinct, GPO Box 2583, Brisbane, Queensland 4001, Australia.

出版信息

Ecology. 2012 Jan;93(1):156-68. doi: 10.1890/11-0252.1.

Abstract

In ecological analyses of species and community distributions there is interest in the nature of their responses to environmental gradients and in identifying the most important environmental variables, which may be used for predicting patterns of biodiversity. Methods such as random forests already exist to assess predictor importance for individual species and to indicate where along gradients abundance changes. However, there is a need to extend these methods to whole assemblages, to establish where along the range of these gradients the important compositional changes occur, and to identify any important thresholds or change points. We develop such a method, called "gradient forest," which is an extension of the random forest approach. By synthesizing the cross-validated R2 and accuracy importance measures from univariate random forest analyses across multiple species, sampling devices, and surveys, gradient forest obtains a monotonic function of each predictor that represents the compositional turnover along the gradient of the predictor. When applied to a synthetic data set, the method correctly identified the important predictors and delineated where the compositional change points occurred along these gradients. Application of gradient forest to a real data set from part of the Great Barrier Reef identified mud fraction of the sediment as the most important predictor, with highest compositional turnover occurring at mud fraction values around 25%, and provided similar information for other predictors. Such refined information allows for more accurate capturing of biodiversity patterns for the purposes of bioregionalization, delineation of protected areas, or designing of biodiversity surveys.

摘要

在对物种和群落分布进行生态分析时,人们有兴趣了解它们对环境梯度的反应性质,并确定最重要的环境变量,这些变量可用于预测生物多样性模式。已经存在诸如随机森林之类的方法来评估单个物种的预测因子重要性,并指示丰度变化沿梯度的位置。但是,需要将这些方法扩展到整个集合,以确定这些梯度的范围内重要的组成变化发生的位置,并确定任何重要的阈值或变化点。我们开发了一种称为“梯度森林”的方法,这是随机森林方法的扩展。通过综合跨多个物种,采样设备和调查的单变量随机森林分析的交叉验证 R2 和准确性重要性度量,梯度森林获得了代表沿预测因子梯度的组成性变化的每个预测因子的单调函数。当应用于合成数据集时,该方法正确地识别了重要的预测因子,并确定了这些梯度中组成变化点发生的位置。将梯度森林应用于大堡礁部分地区的真实数据集,确定了沉积物中的泥分数是最重要的预测因子,在泥分数值约为 25%时,组成性变化最大,并为其他预测因子提供了类似的信息。这种更精细的信息可更准确地捕获生物多样性模式,以便进行生物区域划分,划定保护区或设计生物多样性调查。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验