Collins Jason C, Greene Lesley H
Department of Chemistry and Biochemistry, Old Dominion University, 4541 Hampton Boulevard, Norfolk, VA 23529, USA.
Protein Pept Lett. 2012 Sep;19(9):982-90. doi: 10.2174/092986612802084438.
Amyloidosis resulting from the deposition of aggregated protein has been linked to many debilitating degenerative diseases which include most notably Alzheimer's and Parkinson's. The tendency for a protein to alternatively form highly ordered amyloid fibrils is dependent on many biological factors. Mutations, temperature, concentration, translational motion and pH play a pivotal role in inducing fibril aggregate assembly in vitro. The key feature appears to be the need to destabilize the native state structure as a required first step. In this paper we report on the detailed conversion of the death domain of the human Fas-associated death domain, an all α-helical protein with a Greek-key topology, into an all β-sheet amyloid fibril, using a comprehensive range of spectroscopic techniques that provide insight into this process. This transition from α-helical to β-sheet seems to require destabilization but not complete loss of the secondary structure to explore alternative conformations. This is a fascinating transition that supports the hypothesis that all proteins have the innate ability to form a fibril-like structure. Thus, the primary structure can encode two alternative three-dimensional structures: the native, functional state and the β-amyloid state. The Fas-associated death domain does not appear to naturally form amyloid fibrils in vivo. Our results clearly indicate that proteins evolved to avoid amyloid fibril formation because we find that the conditions required for formation in our model system are very specific and far from physiological.
由聚集蛋白沉积导致的淀粉样变性与许多使人衰弱的退行性疾病有关,其中最显著的包括阿尔茨海默病和帕金森病。蛋白质形成高度有序淀粉样纤维的倾向取决于许多生物学因素。突变、温度、浓度、平移运动和pH值在体外诱导纤维聚集体组装中起关键作用。关键特征似乎是需要首先使天然状态结构不稳定。在本文中,我们报告了人类Fas相关死亡结构域(一种具有希腊钥匙拓扑结构的全α螺旋蛋白)的死亡结构域详细转变为全β折叠淀粉样纤维的过程,我们使用了一系列全面的光谱技术来深入了解这一过程。从α螺旋到β折叠的这种转变似乎需要使二级结构不稳定,但不是完全丧失,以便探索其他构象。这是一个引人入胜的转变,支持了所有蛋白质都具有形成纤维状结构的内在能力这一假设。因此,一级结构可以编码两种不同的三维结构:天然功能状态和β淀粉样状态。Fas相关死亡结构域在体内似乎不会自然形成淀粉样纤维。我们的结果清楚地表明,蛋白质进化是为了避免淀粉样纤维的形成,因为我们发现在我们的模型系统中形成所需的条件非常特殊,且远离生理状态。