Suppr超能文献

基于残基接触相似性对生物分子复合物进行聚类。

Clustering biomolecular complexes by residue contacts similarity.

机构信息

Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH Utrecht, The Netherlands.

出版信息

Proteins. 2012 Jul;80(7):1810-7. doi: 10.1002/prot.24078. Epub 2012 May 8.

Abstract

Inaccuracies in computational molecular modeling methods are often counterweighed by brute-force generation of a plethora of putative solutions. These are then typically sieved via structural clustering based on similarity measures such as the root mean square deviation (RMSD) of atomic positions. Albeit widely used, these measures suffer from several theoretical and technical limitations (e.g., choice of regions for fitting) that impair their application in multicomponent systems (N > 2), large-scale studies (e.g., interactomes), and other time-critical scenarios. We present here a simple similarity measure for structural clustering based on atomic contacts--the fraction of common contacts--and compare it with the most used similarity measure of the protein docking community--interface backbone RMSD. We show that this method produces very compact clusters in remarkably short time when applied to a collection of binary and multicomponent protein-protein and protein-DNA complexes. Furthermore, it allows easy clustering of similar conformations of multicomponent symmetrical assemblies in which chain permutations can occur. Simple contact-based metrics should be applicable to other structural biology clustering problems, in particular for time-critical or large-scale endeavors.

摘要

计算分子建模方法中的误差通常可以通过生成大量可能的解决方案来抵消。然后,这些解决方案通常通过基于相似性度量(例如原子位置的均方根偏差(RMSD))的结构聚类进行筛选。尽管这些方法被广泛使用,但它们存在一些理论和技术上的限制(例如,拟合区域的选择),这限制了它们在多组分系统(N > 2)、大规模研究(例如,相互作用组)和其他时间关键场景中的应用。我们在这里提出了一种基于原子接触的结构聚类的简单相似性度量方法 - 公共接触分数 - 并将其与蛋白质对接社区中最常用的相似性度量方法 - 界面骨架 RMSD 进行了比较。我们表明,当应用于一系列二进制和多组分蛋白质-蛋白质和蛋白质-DNA 复合物时,该方法在非常短的时间内产生非常紧凑的簇。此外,它允许容易地对可能发生链置换的多组分对称组装的相似构象进行聚类。简单的基于接触的指标应该适用于其他结构生物学聚类问题,特别是对于时间关键或大规模的努力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验