Suppr超能文献

利用机器学习和信息驱动对接技术对抗体-抗原复合物进行精确建模。

Towards the accurate modelling of antibody-antigen complexes from sequence using machine learning and information-driven docking.

机构信息

Bijvoet Centre for Biomolecular Research, Faculty of Science-Chemistry, Utrecht University, Utrecht CH 3584, The Netherlands.

Exscientia Plc, Oxford OX4 4GE, United Kingdom.

出版信息

Bioinformatics. 2024 Oct 1;40(10). doi: 10.1093/bioinformatics/btae583.

Abstract

MOTIVATION

Antibody-antigen complex modelling is an important step in computational workflows for therapeutic antibody design. While experimentally determined structures of both antibody and the cognate antigen are often not available, recent advances in machine learning-driven protein modelling have enabled accurate prediction of both antibody and antigen structures. Here, we analyse the ability of protein-protein docking tools to use machine learning generated input structures for information-driven docking.

RESULTS

In an information-driven scenario, we find that HADDOCK can generate accurate models of antibody-antigen complexes using an ensemble of antibody structures generated by machine learning tools and AlphaFold2 predicted antigen structures. Targeted docking using knowledge of the complementary determining regions on the antibody and some information about the targeted epitope allows the generation of high-quality models of the complex with reduced sampling, resulting in a computationally cheap protocol that outperforms the ZDOCK baseline.

AVAILABILITY AND IMPLEMENTATION

The source code of HADDOCK3 is freely available at github.com/haddocking/haddock3. The code to generate and analyse the data is available at github.com/haddocking/ai-antibodies. The full runs, including docking models from all modules of a workflow have been deposited in our lab collection (data.sbgrid.org/labs/32/1139) at the SBGRID data repository.

摘要

动机

抗体-抗原复合物建模是治疗性抗体设计计算工作流程中的重要步骤。虽然抗体和同源抗原的实验确定结构通常不可用,但机器学习驱动的蛋白质建模的最新进展使得抗体和抗原结构的准确预测成为可能。在这里,我们分析了蛋白质-蛋白质对接工具使用机器学习生成的输入结构进行信息驱动对接的能力。

结果

在信息驱动的情况下,我们发现 HADDOCK 可以使用机器学习工具生成的抗体结构集合和 AlphaFold2 预测的抗原结构生成抗体-抗原复合物的准确模型。使用抗体上的互补决定区的知识和有关靶向表位的一些信息进行靶向对接,可以减少采样并生成高质量的复合物模型,从而实现一种计算成本低廉的协议,优于 ZDOCK 基线。

可用性和实现

HADDOCK3 的源代码可在 github.com/haddocking/haddock3 上免费获得。生成和分析数据的代码可在 github.com/haddocking/ai-antibodies 上获得。完整的运行情况,包括来自工作流程所有模块的对接模型,已在我们的实验室集合(data.sbgrid.org/labs/32/1139)中存储在 SBGRID 数据存储库中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e5ee/11483107/1ff421c12e85/btae583f5.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验