Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China.
J Phys Chem B. 2012 Apr 26;116(16):4851-9. doi: 10.1021/jp3028325. Epub 2012 Apr 10.
We present an exploration of proton transfer dynamics in a monosaccharide, based upon ab initio molecular dynamic (AIMD) simulations, conducted "on-the-fly", in β-d-galactose-H(+) (βGal-H(+)) and its singly hydrated complex, βGal-H(+)-H2O. Prior structural calculations identify O6 as the preferred protonation site for O-methyl α-d-galactopyranoside, but the β-anomeric configuration favors the inversion of the pyranose ring from the (4)C1 chair configuration, to (1)C4, and the formation of proton bridges to the (axial) O1 and O3 sites. In the hydrated complex, however, the proton bonds to the water molecule inserted between the O6 and Ow sites, and the ring retains its original (4)C1 conformation, supported by a circular network of co-operatively linked hydrogen bonds. Two distinct proton transfer processes, operating over a time scale of 10 ps, have been identified in βGal-H(+) at 500 K. One of them leads to chemical reaction and the formation of an oxacarbenium ion (accompanied by the loss of an H2O molecule). In the hydrated complex, βGal-H(+)-H2O, this reaction is suppressed, and the proton transfer, which involves multiple jumps between the sugar and the H2O, creates an H3O(+) ion, relevant, perhaps, to the reactivity of protonated sugars both in the gas and condensed phases. Anticipating future spectroscopic investigations, the vibrational spectra of βGal-H(+) and βGal-H(+)-H2O have also been computed through AIMD simulations conducted at average temperatures of 300 and 40 K and also through vibrational self-consistent field (VSCF) calculations at 0 K.
我们基于从头算分子动力学(AIMD)模拟,对单糖中的质子转移动力学进行了探索,这些模拟是在β-D-半乳糖- H(+)(βGal-H(+))及其单水合复合物βGal-H(+)-H2O 中“实时”进行的。先前的结构计算确定 O6 是 O-甲基-α-D-半乳糖吡喃糖苷的优先质子化位点,但β-端基构型有利于吡喃糖环从(4)C1 椅式构型反转到(1)C4,并且形成质子桥到(轴向)O1 和 O3 位点。然而,在水合复合物中,质子与插入 O6 和 Ow 位点之间的水分子形成键,并且环保留其原始的(4)C1 构象,这得到了协同连接氢键的环状网络的支持。在 500 K 下,在βGal-H(+)中已经确定了两种不同的质子转移过程,其作用时间尺度为 10 ps。其中之一导致化学反应和氧杂碳正离子的形成(伴随着 H2O 分子的损失)。在水合复合物βGal-H(+)-H2O 中,该反应受到抑制,质子转移涉及糖和 H2O 之间的多次跳跃,从而形成 H3O(+)离子,这可能与气相和凝聚相中质子化糖的反应性有关。预计未来的光谱研究,βGal-H(+)和βGal-H(+)-H2O 的振动光谱也通过在平均温度为 300 和 40 K 时进行的 AIMD 模拟以及在 0 K 时进行的振动自洽场(VSCF)计算进行了计算。