School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
Phys Chem Chem Phys. 2011 Mar 14;13(10):4562-75. doi: 10.1039/c0cp02068k. Epub 2011 Jan 31.
Proton transfer reactions and dynamics were theoretically studied using the hydrogen-bond (H-bond) complexes formed from H(3)O(+) and nH(2)O, n = 1-4, as model systems. The investigations began with searching for characteristics of transferring protons in the gas phase and continuum aqueous solution using DFT method at the B3LYP/TZVP level, followed by Born-Oppenheimer molecular dynamics (BOMD) simulations at 350 K. B3LYP/TZVP calculations revealed the threshold asymmetric O-H stretching frequencies (ν(OH)) for the proton transfers in the Zundel complex (H(5)O) in the gas phase and continuum aqueous solution at 1984 and 1881 cm(-1), respectively. BOMD simulations suggested lower threshold frequencies (ν(OH,MD) = 1917 and 1736 cm(-1), respectively), with two characteristic ν(OH,MD) being the IR spectral signatures of the transferring protons. The low-frequency band could be associated with the "oscillatory shuttling motion" and the high-frequency band with the "structural diffusion motion". These can be regarded as the spectroscopic evidences of the formations of the shared-proton structure (O···H(+)···O) and the H(3)O(+)-H(2)O contact structure (O-H(+)···O), respectively. Since the quasi-dynamic equilibrium between the Zundel and Eigen complexes was suggested to be the rate-determining step, in order to achieve an "ideal" maximum efficiency of proton transfer, a concerted reaction pathway should be taken. The most effective interconversion between the two proton states, the shared-proton structure and the H(3)O(+)-H(2)O contact structure, can be reflected from comparable intensities of the oscillatory shuttling and structural diffusion bands. The present results iterated the previous conclusions that static proton transfer potentials cannot provide complete description of the structural diffusion process and it is essential to incorporate thermal energy fluctuations and dynamics in the model calculations.
质子转移反应和动力学理论研究采用氢键(H 键)复合物从 H(3)O(+)和 nH(2)O,n = 1-4,作为模型系统。研究开始寻找气相和连续相水溶液中的质子转移特征,使用密度泛函理论(DFT)方法在 B3LYP/TZVP 水平,随后在 350 K 下进行 Born-Oppenheimer 分子动力学(BOMD)模拟。B3LYP/TZVP 计算揭示了气相和连续相水溶液中 Zundel 配合物(H(5)O)中质子转移的不对称 O-H 伸缩频率(ν(OH))的阈值,分别为 1984 和 1881 cm(-1)。BOMD 模拟表明,阈值频率较低(ν(OH,MD)= 1917 和 1736 cm(-1),分别),两个特征ν(OH,MD)是转移质子的 IR 光谱特征。低频带可与“振荡穿梭运动”相关联,高频带与“结构扩散运动”相关联。这些可以被视为共享质子结构(O···H(+)···O)和 H(3)O(+)-H(2)O 接触结构(O-H(+)···O)形成的光谱证据,分别。由于建议准动态平衡在 Zundel 和 Eigen 配合物之间是速率决定步骤,为了达到质子转移的“理想”最大效率,应该采取协同反应途径。两个质子态之间的最有效转化,共享质子结构和 H(3)O(+)-H(2)O 接触结构,可以从振荡穿梭和结构扩散带的可比强度反映出来。本研究结果迭代了先前的结论,即静态质子转移势能不能提供结构扩散过程的完整描述,在模型计算中纳入热能波动和动力学是必不可少的。