Suppr超能文献

显式关联局域耦合簇方法与各种虚拟轨道选择的比较。

Comparison of explicitly correlated local coupled-cluster methods with various choices of virtual orbitals.

机构信息

Institut für Theoretische Chemie, Universität Stuttgart, D-70569 Stuttgart, Germany.

出版信息

Phys Chem Chem Phys. 2012 Jun 7;14(21):7591-604. doi: 10.1039/c2cp40231a. Epub 2012 Apr 10.

Abstract

Explicitly correlated local coupled-cluster (LCCSD-F12) methods with pair natural orbitals (PNOs), orbital specific virtual orbitals (OSVs), and projected atomic orbitals (PAOs) are compared. In all cases pair-specific virtual subspaces (domains) are used, and the convergence of the correlation energy as a function of the domain sizes is studied. Furthermore, the performance of the methods for reaction energies of 52 reactions involving 58 small and medium sized molecules is investigated. It is demonstrated that for all choices of virtual orbitals much smaller domains are needed in the explicitly correlated methods than without the explicitly correlated terms, since the latter correct a large part of the domain error, as found previously. For PNO-LCCSD-F12 with VTZ-F12 basis sets on the average only 20 PNOs per pair are needed to obtain reaction energies with a root mean square deviation of less than 1 kJ mol(-1) from complete basis set estimates. With OSVs or PAOs at least 4 times larger domains are needed for the same accuracy. A new hybrid method that combines the advantages of the OSV and PNO methods is proposed and tested. While in the current work the different local methods are only simulated using a conventional CCSD program, the implications for low-order scaling local implementations of the various methods are discussed.

摘要

显式关联局部耦合簇(LCCSD-F12)方法与对自然轨道(PNOs)、轨道特定虚拟轨道(OSVs)和投影原子轨道(PAOs)进行了比较。在所有情况下都使用了特定对的虚拟子空间(域),并研究了关联能随域大小的收敛性。此外,还研究了这些方法在涉及 58 个中小分子的 52 个反应的反应能上的性能。结果表明,对于所有虚拟轨道的选择,显式相关方法所需的虚拟域比没有显式相关项的方法小得多,因为后者校正了大部分的域误差,如前所述。对于使用 VTZ-F12 基组的 PNO-LCCSD-F12,平均每对只需 20 个 PNO 即可获得反应能,其均方根偏差与完全基组估计值相差小于 1 kJ mol(-1)。对于相同的精度,使用 OSVs 或 PAOs 需要至少大 4 倍的域。提出并测试了一种新的混合方法,该方法结合了 OSV 和 PNO 方法的优点。虽然在目前的工作中,不同的局部方法仅使用传统的 CCSD 程序进行模拟,但讨论了各种方法的低阶定标局部实现的影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验