Suppr超能文献

可扩展的电子相关方法I:分子大小呈线性缩放且处理器数量呈近逆线性缩放的PNO-LMP2

Scalable electron correlation methods I.: PNO-LMP2 with linear scaling in the molecular size and near-inverse-linear scaling in the number of processors.

作者信息

Werner Hans-Joachim, Knizia Gerald, Krause Christine, Schwilk Max, Dornbach Mark

机构信息

Institut für Theoretische Chemie, Universität Stuttgart , Pfaffenwaldring 55, 70569 Stuttgart, Germany.

出版信息

J Chem Theory Comput. 2015 Feb 10;11(2):484-507. doi: 10.1021/ct500725e.

Abstract

We propose to construct electron correlation methods that are scalable in both molecule size and aggregated parallel computational power, in the sense that the total elapsed time of a calculation becomes nearly independent of the molecular size when the number of processors grows linearly with the molecular size. This is shown to be possible by exploiting a combination of local approximations and parallel algorithms. The concept is demonstrated with a linear scaling pair natural orbital local second-order Møller-Plesset perturbation theory (PNO-LMP2) method. In this method, both the wave function manifold and the integrals are transformed incrementally from projected atomic orbitals (PAOs) first to orbital-specific virtuals (OSVs) and finally to pair natural orbitals (PNOs), which allow for minimum domain sizes and fine-grained accuracy control using very few parameters. A parallel algorithm design is discussed, which is efficient for both small and large molecules, and numbers of processors, although true inverse-linear scaling with compute power is not yet reached in all cases. Initial applications to reactions involving large molecules reveal surprisingly large effects of dispersion energy contributions as well as large intramolecular basis set superposition errors in canonical MP2 calculations. In order to account for the dispersion effects, the usual selection of PNOs on the basis of natural occupation numbers turns out to be insufficient, and a new energy-based criterion is proposed. If explicitly correlated (F12) terms are included, fast convergence to the MP2 complete basis set (CBS) limit is achieved. For the studied reactions, the PNO-LMP2-F12 results deviate from the canonical MP2/CBS and MP2-F12 values by <1 kJ mol(-1), using triple-ζ (VTZ-F12) basis sets.

摘要

我们提议构建在分子大小和聚合并行计算能力方面均可扩展的电子相关方法,即当处理器数量随分子大小线性增长时,计算的总耗时几乎与分子大小无关。通过结合局部近似和并行算法,证明这是可行的。用线性缩放对自然轨道局部二阶莫勒-普莱塞特微扰理论(PNO-LMP2)方法演示了这一概念。在该方法中,波函数流形和积分首先从投影原子轨道(PAO)逐步变换为轨道特定虚轨道(OSV),最后变换为对自然轨道(PNO),这允许使用极少参数实现最小域大小和细粒度精度控制。讨论了一种并行算法设计,它对小分子和大分子以及处理器数量都很有效,尽管在所有情况下尚未实现与计算能力的真正反线性缩放。对涉及大分子反应的初步应用揭示了色散能贡献的惊人巨大影响以及规范MP2计算中较大的分子内基组叠加误差。为了考虑色散效应,基于自然占据数对PNO的通常选择被证明是不够的,因此提出了一种新的基于能量的标准。如果包含显式相关(F12)项,则可快速收敛到MP2完全基组(CBS)极限。对于所研究的反应,使用三重ζ(VTZ-F12)基组时,PNO-LMP2-F12结果与规范MP2/CBS和MP2-F12值的偏差小于1 kJ mol⁻¹。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验