Suppr超能文献

基于模型的脑血流速度和动脉压无创颅内压估计。

Model-based noninvasive estimation of intracranial pressure from cerebral blood flow velocity and arterial pressure.

机构信息

Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.

出版信息

Sci Transl Med. 2012 Apr 11;4(129):129ra44. doi: 10.1126/scitranslmed.3003249.

Abstract

Intracranial pressure (ICP) is affected in many neurological conditions. Clinical measurement of pressure on the brain currently requires placing a probe in the cerebrospinal fluid compartment, the brain tissue, or other intracranial space. This invasiveness limits the measurement to critically ill patients. Because ICP is also clinically important in conditions ranging from brain tumors and hydrocephalus to concussions, noninvasive determination of ICP would be desirable. Our model-based approach to continuous estimation and tracking of ICP uses routinely obtainable time-synchronized, noninvasive (or minimally invasive) measurements of peripheral arterial blood pressure and blood flow velocity in the middle cerebral artery (MCA), both at intra-heartbeat resolution. A physiological model of cerebrovascular dynamics provides mathematical constraints that relate the measured waveforms to ICP. Our algorithm produces patient-specific ICP estimates with no calibration or training. Using 35 hours of data from 37 patients with traumatic brain injury, we generated ICP estimates on 2665 nonoverlapping 60-beat data windows. Referenced against concurrently recorded invasive parenchymal ICP that varied over 100 millimeters of mercury (mmHg) across all records, our estimates achieved a mean error (bias) of 1.6 mmHg and SD of error (SDE) of 7.6 mmHg. For the 1673 data windows over 22 hours in which blood flow velocity recordings were available from both the left and the right MCA, averaging the resulting bilateral ICP estimates reduced the bias to 1.5 mmHg and SDE to 5.9 mmHg. This accuracy is already comparable to that of some invasive ICP measurement methods in current clinical use.

摘要

颅内压 (ICP) 在许多神经疾病中都会受到影响。目前,对大脑压力的临床测量需要将探头放置在脑脊液腔、脑组织或其他颅内空间中。这种侵入性限制了对危重症患者的测量。因为 ICP 在从脑肿瘤和脑积水到脑震荡等疾病中也具有重要的临床意义,所以非侵入性的 ICP 测定将是理想的。我们的基于模型的连续估计和跟踪 ICP 的方法使用常规获得的、时间同步的、非侵入性(或微创性)的测量来测量大脑中动脉 (MCA) 的外周动脉血压和血流速度,这两种测量都在心跳分辨率内。脑血管动力学的生理模型提供了数学约束,将测量的波形与 ICP 联系起来。我们的算法在没有校准或训练的情况下生成患者特定的 ICP 估计值。使用 37 名创伤性脑损伤患者的 35 小时数据,我们在 2665 个不重叠的 60 拍数据窗口中生成了 ICP 估计值。参考所有记录中变化范围超过 100 毫米汞柱 (mmHg) 的同时记录的侵入性脑实质 ICP,我们的估计值平均误差(偏差)为 1.6mmHg,误差标准差 (SDE) 为 7.6mmHg。在 1673 个数据窗口中,有 22 小时记录了来自左侧和右侧 MCA 的血流速度记录,平均双侧 ICP 估计值可将偏差降低至 1.5mmHg,SDE 降低至 5.9mmHg。这种准确性已经与当前临床应用的一些侵入性 ICP 测量方法相当。

相似文献

2
A Spectral Approach to Model-Based Noninvasive Intracranial Pressure Estimation.基于模型的无创颅内压估计的谱方法。
IEEE J Biomed Health Inform. 2020 Aug;24(8):2398-2406. doi: 10.1109/JBHI.2019.2961403. Epub 2019 Dec 25.
3
A Frequency-domain Approach to Noninvasive Intracranial Pressure Estimation.一种用于无创颅内压估计的频域方法。
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:5055-5058. doi: 10.1109/EMBC.2019.8857042.
7
Regression-based noninvasive estimation of intracranial pressure.基于回归的颅内压无创估计
Annu Int Conf IEEE Eng Med Biol Soc. 2017 Jul;2017:4001-4004. doi: 10.1109/EMBC.2017.8037733.

引用本文的文献

9
Non-Invasive Intracranial Pressure Monitoring.无创颅内压监测
J Clin Med. 2023 Mar 13;12(6):2209. doi: 10.3390/jcm12062209.

本文引用的文献

1
Increases in cerebrovascular impedance in older adults.老年人脑血管阻抗增加。
J Appl Physiol (1985). 2011 Aug;111(2):376-81. doi: 10.1152/japplphysiol.01418.2010. Epub 2011 May 26.
4
Improved noninvasive intracranial pressure assessment with nonlinear kernel regression.利用非线性核回归改进无创颅内压评估
IEEE Trans Inf Technol Biomed. 2010 Jul;14(4):971-8. doi: 10.1109/TITB.2009.2027317. Epub 2009 Jul 28.
6
A review of physiological simulation models of intracranial pressure dynamics.颅内压动力学生理模拟模型综述。
Comput Biol Med. 2008 Sep;38(9):1024-41. doi: 10.1016/j.compbiomed.2008.07.004. Epub 2008 Aug 29.
7
The arterial Windkessel.动脉风箱模型
Med Biol Eng Comput. 2009 Feb;47(2):131-41. doi: 10.1007/s11517-008-0359-2. Epub 2008 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验