Sudfeldt C, Schäffer A, Kägi J H, Bogumil R, Schulz H P, Wulff S, Witzel H
Institute of Biochemistry, University of Münster, Federal Republic of Germany.
Eur J Biochem. 1990 Nov 13;193(3):863-71. doi: 10.1111/j.1432-1033.1990.tb19410.x.
The coordination sphere of the two metal-binding sites/subunit of the homotetrameric D-xylose isomerase from Streptomyces rubiginosus has been probed by the investigation of the Co2(+)-substituted enzyme using electronic absorption, CD and magnetic circular dichroic spectroscopies in the visible region. The spectrum of the high-affinity site (B site) has an absorption coefficient, epsilon 545, of 18 M-1 cm-1, indicating a distorted octahedral complex geometry. The spectrum of the low-affinity site (A site) shows two absorption maxima at 505 nm and 586 nm with epsilon values of 170 M-1 cm-1 and 240 M-1 cm-1, respectively, which indicates a distorted tetrahedral or pentacoordinated complex structure as also observed for the enzyme from Streptomyces violaceoruber [Callens et al. (1988) Biochem. J. 250, 285-290] having the same feature but lower epsilon values. The first 4 mol Co2+ added/mol apoenzyme occupy both sites nearly equally. Subsequently the Co2+ located in the A site slowly moves into the B site. After equilibrium is reached, the next 4 mol Co2+/mol again occupy the A site with its typical spectrum, restoring full activity. Addition of 4 mol Cd2+ or Pb2+/mol Co4-loaded derivative displaces the Co2+ from the B site to form the Pb4/Co4 derivative containing Co2+ in the A site, reducing activity fourfold while the Pb4/Pb4 species is completely inactive. In contrast, Eu3+ displaces Co2+ preferentially from the A site. Thus, the high- and low-affinity sites may be different for different cations. After addition of the substrates D-xylose, D-glucose and D-fructose and the inhibitor xylitol the intense Co2+ A-site spectrum of both the active Co4/Co4 derivative and the less active Pb4/PCo4 derivative decreases, indicating that these compounds are bound to the A site, changing the distorted tetrahedral or pentacoordinated symmetry there to a distorted octahedral complex geometry.
通过使用可见区域的电子吸收光谱、圆二色光谱和磁圆二色光谱对钴(II)取代的酶进行研究,探究了来自红色链霉菌的同四聚体D - 木糖异构酶两个金属结合位点/亚基的配位球。高亲和力位点(B位点)的光谱在545 nm处的吸收系数ε为18 M⁻¹ cm⁻¹,表明其八面体配合物几何结构发生了扭曲。低亲和力位点(A位点)的光谱在505 nm和586 nm处有两个吸收最大值,ε值分别为170 M⁻¹ cm⁻¹和240 M⁻¹ cm⁻¹,这表明其为扭曲的四面体或五配位配合物结构,这在具有相同特征但ε值较低的紫色链霉菌的酶中也有观察到[卡伦斯等人(1988年),《生物化学杂志》250卷,285 - 290页]。每摩尔脱辅基酶添加的前4摩尔钴(II)几乎平均占据两个位点。随后,位于A位点的钴(II)缓慢移动到B位点。达到平衡后,接下来每摩尔再添加4摩尔钴(II)又以其典型光谱占据A位点,恢复了全部活性。每摩尔钴(IV)负载衍生物添加4摩尔镉(II)或铅(II)会将钴(II)从B位点取代,形成在A位点含有钴(II)的铅(IV)/钴(IV)衍生物,使活性降低四倍,而铅(IV)/铅(IV)物种则完全无活性。相比之下,铕(III)优先从A位点取代钴(II)。因此,不同阳离子的高亲和力和低亲和力位点可能不同。添加底物D - 木糖、D - 葡萄糖和D - 果糖以及抑制剂木糖醇后,活性钴(IV)/钴(IV)衍生物和活性较低的铅(IV)/钴(IV)衍生物的强烈钴(II)A位点光谱均降低,表明这些化合物与A位点结合,将那里扭曲的四面体或五配位对称性转变为扭曲的八面体配合物几何结构。