School of Life Sciences, KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea; KNU Institute for Microorganisms, Kyungpook National University, Daegu, Republic of Korea.
Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea.
Biochem Biophys Res Commun. 2018 Sep 5;503(2):770-775. doi: 10.1016/j.bbrc.2018.06.074. Epub 2018 Jun 18.
Glucose isomerase (GI) catalyzes the reversible enzymatic isomerization of d-glucose and d-xylose to d-fructose and d-xylulose, respectively. This is one of the most important enzymes in the production of high-fructose corn syrup (HFCS) and biofuel. We recently determined the crystal structure of GI from S. rubiginosus (SruGI) complexed with a xylitol inhibitor in one metal binding mode. Although we assessed inhibitor binding at the M1 site, the metal binding at the M2 site and the substrate recognition mechanism for SruGI remains the unclear. Here, we report the crystal structure of the two metal binding modes of SruGI and its complex with glucose. This study provides a snapshot of metal binding at the SruGI M2 site in the presence of Mn, but not in the presence of Mg. Metal binding at the M2 site elicits a configuration change at the M1 site. Glucose molecule can only bind to the M1 site in presence of Mn at the M2 site. Glucose and Mn at the M2 site were bridged by water molecules using a hydrogen bonding network. The metal binding geometry of the M2 site indicates a distorted octahedral coordination with an angle of 55-110°, whereas the M1 site has a relatively stable octahedral coordination with an angle of 85-95°. We suggest a two-step sequential process for SruGI substrate recognition, in Mn binding mode, at the M2 site. Our results provide a better understanding of the molecular role of the M2 site in GI substrate recognition.
葡萄糖异构酶(GI)催化 d-葡萄糖和 d-木糖的可逆酶促异构化,分别生成 d-果糖和 d-木酮糖。这是生产高果糖玉米糖浆(HFCS)和生物燃料的最重要的酶之一。我们最近确定了 S. rubiginosus(SruGI)与木糖醇抑制剂复合物的晶体结构,其中一种金属结合模式。虽然我们评估了 M1 位点的抑制剂结合,但 SruGI 的金属结合在 M2 位点和底物识别机制仍不清楚。在这里,我们报告了 SruGI 及其与葡萄糖复合物的两种金属结合模式的晶体结构。这项研究提供了 SruGI M2 位点在存在 Mn 时的金属结合快照,但在存在 Mg 时则不然。M2 位点的金属结合引起 M1 位点的构象变化。只有在 M2 位点存在 Mn 时,葡萄糖分子才能结合到 M1 位点。葡萄糖和 Mn 在 M2 位点通过氢键网络与水分子桥接。M2 位点的金属结合几何形状表明具有 55-110°的扭曲八面体配位,而 M1 位点具有相对稳定的八面体配位,角度为 85-95°。我们建议 M2 位点在 Mn 结合模式下的 SruGI 底物识别的两步顺序过程。我们的结果提供了对 GI 底物识别中 M2 位点分子作用的更好理解。