Université Grenoble, IBS, Institut de Biologie Structurale, Grenoble, France.
ACS Chem Biol. 2012 Jul 20;7(7):1164-9. doi: 10.1021/cb300012j. Epub 2012 Apr 20.
The mitochondrial ADP/ATP carrier (AAC) is a prominent actor in the energetic regulation of the cell, importing ADP into the mitochondria and exporting ATP toward the cytoplasm. Severe genetic diseases have been ascribed to specific mutations in this membrane protein. How minute, well-localized modifications of the transporter impact the function of the mitochondria remains, however, largely unclear. Here, for the first time, the relationship between all documented pathological mutations of the AAC and its transport properties is established. Activity measurements combined synergistically with molecular-dynamics simulations demonstrate how all documented pathological mutations alter the binding affinity and the translocation kinetics of the nucleotides. Throwing a bridge between the pathologies and their molecular origins, these results reveal two distinct mechanisms responsible for AAC-related genetic disorders, wherein the mutations either modulate the association of the nucleotides to the carrier by modifying its electrostatic signature or reduce its conformational plasticity.
线粒体 ADP/ATP 载体 (AAC) 是细胞能量调节中的重要角色,它将 ADP 导入线粒体,并将 ATP 输出到细胞质。严重的遗传疾病与该膜蛋白的特定突变有关。然而,这种转运蛋白的微小、局部修饰如何影响线粒体的功能在很大程度上仍不清楚。在这里,首次建立了 AAC 的所有有记录的病理突变与其转运特性之间的关系。活性测量与分子动力学模拟相结合,证明了所有有记录的病理突变如何改变核苷酸的结合亲和力和易位动力学。这些结果在病理学与其分子起源之间架起了桥梁,揭示了两种导致 AAC 相关遗传疾病的不同机制,其中突变通过改变其静电特征或降低其构象灵活性来调节核苷酸与载体的结合。