Suppr超能文献

福井函数和实空间线性响应函数的分析评估。

Analytical evaluation of Fukui functions and real-space linear response function.

机构信息

Department of Chemistry, Duke University, Durham, North Carolina 27708, USA.

出版信息

J Chem Phys. 2012 Apr 14;136(14):144110. doi: 10.1063/1.3701562.

Abstract

Many useful concepts developed within density functional theory provide much insight for the understanding and prediction of chemical reactivity, one of the main aims in the field of conceptual density functional theory. While approximate evaluations of such concepts exist, the analytical and efficient evaluation is, however, challenging, because such concepts are usually expressed in terms of functional derivatives with respect to the electron density, or partial derivatives with respect to the number of electrons, complicating the connection to the computational variables of the Kohn-Sham one-electron orbitals. Only recently, the analytical expressions for the chemical potential, one of the key concepts, have been derived by Cohen, Mori-Sánchez, and Yang, based on the potential functional theory formalism. In the present work, we obtain the analytical expressions for the real-space linear response function using the coupled perturbed Kohn-Sham and generalized Kohn-Sham equations, and the Fukui functions using the previous analytical expressions for chemical potentials of Cohen, Mori-Sánchez, and Yang. The analytical expressions are exact within the given exchange-correlation functional. They are applicable to all commonly used approximate functionals, such as local density approximation (LDA), generalized gradient approximation (GGA), and hybrid functionals. The analytical expressions obtained here for Fukui function and linear response functions, along with that for the chemical potential by Cohen, Mori-Sánchez, and Yang, provide the rigorous and efficient evaluation of the key quantities in conceptual density functional theory within the computational framework of the Kohn-Sham and generalized Kohn-Sham approaches. Furthermore, the obtained analytical expressions for Fukui functions, in conjunction with the linearity condition of the ground state energy as a function of the fractional charges, also lead to new local conditions on the exact functionals, expressed in terms of the second-order functional derivatives. We implemented the expressions and demonstrate the efficacy with some atomic and molecular calculations, highlighting the importance of relaxation effects.

摘要

许多有用的概念是在密度泛函理论中发展起来的,为理解和预测化学反应性提供了很多启示,这也是概念密度泛函理论领域的主要目标之一。虽然这些概念有近似的评估,但分析和高效的评估是具有挑战性的,因为这些概念通常是用电子密度的泛函导数或电子数的偏导数来表示的,这使得它们与 Kohn-Sham 单电子轨道的计算变量之间的连接变得复杂。直到最近,Cohen、Mori-Sánchez 和 Yang 才基于位势泛函理论形式推导出化学势这一关键概念的解析表达式。在本工作中,我们使用耦合微扰 Kohn-Sham 和广义 Kohn-Sham 方程获得了实空间线性响应函数的解析表达式,并使用 Cohen、Mori-Sánchez 和 Yang 之前的化学势解析表达式获得了福井函数的解析表达式。在所给交换关联泛函内,这些解析表达式是精确的。它们适用于所有常用的近似泛函,如局域密度近似(LDA)、广义梯度近似(GGA)和混合泛函。这里得到的福井函数和线性响应函数的解析表达式,以及 Cohen、Mori-Sánchez 和 Yang 的化学势解析表达式,为概念密度泛函理论中的关键量在 Kohn-Sham 和广义 Kohn-Sham 方法的计算框架内提供了严格和高效的评估。此外,福井函数的解析表达式与基态能量作为分数电荷的函数的线性条件相结合,也导致了精确泛函的新的局部条件,用二阶泛函导数来表示。我们实现了这些表达式,并通过一些原子和分子计算演示了它们的有效性,突出了弛豫效应的重要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验