Institut für Physikalische Chemie, Universität Karlsruhe, Kaiserstrasse 12, 76131 Karlsruhe, Germany.
J Chem Phys. 2010 Jan 28;132(4):044107. doi: 10.1063/1.3292571.
First-order nonadiabatic coupling matrix elements (NACMEs) are key for phenomena such as nonradiative transitions and excited-state decay, yet a consistent and practical first principles treatment has been elusive for molecules with more than a few heavy atoms. Here we present theory, implementation using Gaussian basis sets, and benchmarks of first-order NACMEs between ground and excited states in the framework of time-dependent hybrid density functional theory (TDDFT). A time-dependent response approach to NACMEs which avoids explicit computation of excited-state wave functions is outlined. In contrast to previous approaches, the present treatment produces exact analytical derivative couplings between time-dependent Kohn-Sham (TDKS) determinants in a finite atom-centered basis set. As in analytical gradient theory, derivative molecular orbital coefficients can be eliminated, making the computational cost independent of the number of nuclear degrees of freedom. Our expression reduces to the exact Chernyak-Mukamel formula for first-order NACMEs in the complete basis-set limit, but greatly improves basis-set convergence in finite atom-centered basis sets due to additional Pulay type terms. The Chernyak-Mukamel formula is shown to be equivalent to the Hellmann-Feynman contribution in analytical gradient theory. Our formalism may be implemented in TDDFT analytical excited-state gradient codes with minor modifications. Tests for systems with up to 147 atoms show that evaluation of first-order NACMEs causes total computation times to increase by an insignificant 10% on average. The resolution-of-the-identity approximation for the Coulomb energy (RI-J) reduces the computational cost by an order of magnitude for nonhybrid functionals, while errors are insignificant with standard auxiliary basis sets. We compare the computed NACMEs to full configuration interaction (FCI) in benchmark results for diatomic molecules; hybrid TDDFT and FCI are found to be in agreement for regions of the potential energy curve where the Kohn-Sham ground-state reference is stable and the character of the excitation is properly captured by the present functionals. With these developments, nonadiabatic molecular dynamics simulations of molecular systems in the 100 atoms regime are within reach.
一阶非绝热耦合矩阵元(NACME)对于非辐射跃迁和激发态衰减等现象至关重要,但对于具有多个重原子的分子,一直难以找到一致且实用的第一性原理处理方法。在这里,我们提出了在含时杂化密度泛函理论(TDDFT)框架内用于计算基态和激发态之间一阶 NACME 的理论、使用高斯基组的实现方法和基准测试。概述了一种避免显式计算激发态波函数的 NACME 的含时响应方法。与以前的方法不同,本方法在有限的原子中心基组中产生时变 Kohn-Sham(TDKS)行列式之间精确的解析导数耦合。与解析梯度理论一样,可以消除导数分子轨道系数,从而使计算成本与核自由度的数量无关。我们的表达式在完全基组极限下简化为一阶 NACME 的精确 Chernyak-Mukamel 公式,但由于附加的 Pulay 型项,在有限的原子中心基组中极大地改善了基组收敛性。Chernyak-Mukamel 公式被证明等同于解析梯度理论中的 Hellmann-Feynman 贡献。我们的形式主义可以通过少量修改在 TDDFT 分析激发态梯度代码中实现。对于多达 147 个原子的系统进行的测试表明,一阶 NACME 的评估平均仅使总计算时间增加微不足道的 10%。对于非杂化泛函,Coulomb 能的积分近似(RI-J)将计算成本降低了一个数量级,而使用标准辅助基组时误差可以忽略不计。我们将计算的 NACME 与基准中二原子分子的完全组态相互作用(FCI)进行了比较;发现混合 TDDFT 和 FCI 在 Kohn-Sham 基态参考稳定且激发的特征被本方法正确捕捉的势能曲线区域是一致的。有了这些发展,就可以在 100 个原子范围内的分子系统中进行非绝热分子动力学模拟。