Suppr超能文献

核形态计量学、核组学与前列腺癌进展。

Nuclear morphometry, nucleomics and prostate cancer progression.

机构信息

Fisher Biomarker & Biorepository Laboratory, The Brady Urological Research Institute, Baltimore, MD 21287, USA.

出版信息

Asian J Androl. 2012 May;14(3):375-84. doi: 10.1038/aja.2011.148. Epub 2012 Apr 16.

Abstract

Prostate cancer (PCa) results from a multistep process. This process includes initiation, which occurs through various aging events and multiple insults (such as chronic infection, inflammation and genetic instability through reactive oxygen species causing DNA double-strand breaks), followed by a multistep process of progression. These steps include several genetic and epigenetic alterations, as well as alterations to the chromatin structure, which occur in response to the carcinogenic stress-related events that sustain proliferative signaling. Events such as evading growth suppressors, resisting cell death, enabling replicative immortality, inducing angiogenesis, and activating invasion and metastasis are readily observed. In addition, in conjunction with these critical drivers of carcinogenesis, other factors related to the etiopathogenesis of PCa, involving energy metabolism and evasion of the immune surveillance system, appear to be involved. In addition, when cancer spread and metastasis occur, the 'tumor microenvironment' in the bone of PCa patients may provide a way to sustain dormancy or senescence and eventually establish a 'seed and soil' site where PCa proliferation and growth may occur over time. When PCa is initiated and progression ensues, significant alterations in nuclear size, shape and heterochromatin (DNA transcription) organization are found, and key nuclear transcriptional and structural proteins, as well as multiple nuclear bodies can lead to precancerous and malignant changes. These series of cellular and tissue-related malignancy-associated events can be quantified to assess disease progression and management.

摘要

前列腺癌(PCa)是一个多步骤的过程。这个过程包括起始阶段,它通过各种衰老事件和多种损伤(如慢性感染、炎症和活性氧引起的 DNA 双链断裂导致的遗传不稳定性)发生,然后是一个多步骤的进展过程。这些步骤包括几个遗传和表观遗传的改变,以及染色质结构的改变,这些改变是对致癌应激相关事件的反应,这些事件维持着增殖信号。很容易观察到逃避生长抑制剂、抵抗细胞死亡、实现复制性永生、诱导血管生成以及激活侵袭和转移等事件。此外,除了这些致癌作用的关键驱动因素外,与前列腺癌病因学相关的其他因素,包括能量代谢和逃避免疫监视系统,似乎也与之有关。此外,当癌症扩散和转移发生时,PCa 患者骨骼中的“肿瘤微环境”可能为维持休眠或衰老并最终建立一个“种子和土壤”位点提供一种方式,在这个位点上,PCa 的增殖和生长可能会随着时间的推移而发生。当 PCa 开始并进展时,会发现核大小、形状和异染色质(DNA 转录)组织的显著改变,以及关键的核转录和结构蛋白以及多个核体可能导致癌前和恶性变化。这些与细胞和组织相关的恶性相关事件系列可以被量化,以评估疾病的进展和管理。

相似文献

1
Nuclear morphometry, nucleomics and prostate cancer progression.
Asian J Androl. 2012 May;14(3):375-84. doi: 10.1038/aja.2011.148. Epub 2012 Apr 16.
2
Advances in the computational and molecular understanding of the prostate cancer cell nucleus.
J Cell Biochem. 2018 Sep;119(9):7127-7142. doi: 10.1002/jcb.27156. Epub 2018 Jun 20.
4
The Proteome of Primary Prostate Cancer.
Eur Urol. 2016 May;69(5):942-52. doi: 10.1016/j.eururo.2015.10.053. Epub 2015 Dec 2.
5
MicroRNA-224 inhibits progression of human prostate cancer by downregulating TRIB1.
Int J Cancer. 2014 Aug 1;135(3):541-50. doi: 10.1002/ijc.28707. Epub 2014 Jan 10.
6
NFATc1 promotes prostate tumorigenesis and overcomes PTEN loss-induced senescence.
Oncogene. 2016 Jun 23;35(25):3282-92. doi: 10.1038/onc.2015.389. Epub 2015 Oct 19.
8
Epigenetic disruption of miR-130a promotes prostate cancer by targeting SEC23B and DEPDC1.
Cancer Lett. 2017 Jan 28;385:150-159. doi: 10.1016/j.canlet.2016.10.028. Epub 2016 Oct 27.
9
Epigenetics in prostate cancer: biologic and clinical relevance.
Eur Urol. 2011 Oct;60(4):753-66. doi: 10.1016/j.eururo.2011.06.035. Epub 2011 Jun 22.
10
The previously uncharacterized lncRNA APP promotes prostate cancer progression by acting as a competing endogenous RNA.
Int J Cancer. 2020 Jan 15;146(2):475-486. doi: 10.1002/ijc.32422. Epub 2019 Jun 4.

引用本文的文献

1
Elevated NPM1 and FBL expression correlates with prostate cancer aggressiveness and progression.
J Pathol. 2025 Sep;267(1):56-68. doi: 10.1002/path.6447. Epub 2025 Jul 24.
3
Subcellular Organelle Targeting as a Novel Approach to Combat Tumor Metastasis.
Pharmaceutics. 2025 Feb 5;17(2):198. doi: 10.3390/pharmaceutics17020198.
4
Altered expression and localization of nuclear envelope proteins in a prostate cancer cell system.
Mol Biol Rep. 2024 Aug 8;51(1):898. doi: 10.1007/s11033-024-09836-4.
5
Predicting lymph node metastasis and recurrence in patients with early stage colorectal cancer.
Front Med (Lausanne). 2022 Sep 15;9:991785. doi: 10.3389/fmed.2022.991785. eCollection 2022.
6
Association between Nuclear Morphometry Parameters and Gleason Grade in Patients with Prostatic Cancer.
Diagnostics (Basel). 2022 May 31;12(6):1356. doi: 10.3390/diagnostics12061356.
7
High mobility group A1 (HMGA1) protein and gene expression correlate with ER-negativity and poor outcomes in breast cancer.
Breast Cancer Res Treat. 2020 Jan;179(1):25-35. doi: 10.1007/s10549-019-05419-1. Epub 2019 Sep 17.
8
Advances in the computational and molecular understanding of the prostate cancer cell nucleus.
J Cell Biochem. 2018 Sep;119(9):7127-7142. doi: 10.1002/jcb.27156. Epub 2018 Jun 20.
10
Detecting and segmenting cell nuclei in two-dimensional microscopy images.
J Pathol Inform. 2016 Oct 21;7:42. doi: 10.4103/2153-3539.192810. eCollection 2016.

本文引用的文献

1
Hallmarks of cancer: the next generation.
Cell. 2011 Mar 4;144(5):646-74. doi: 10.1016/j.cell.2011.02.013.
2
The seed and soil hypothesis revisited--the role of tumor-stroma interactions in metastasis to different organs.
Int J Cancer. 2011 Jun 1;128(11):2527-35. doi: 10.1002/ijc.26031. Epub 2011 Mar 25.
3
Aging-related alterations in the extracellular matrix modulate the microenvironment and influence tumor progression.
Int J Cancer. 2010 Dec 15;127(12):2739-48. doi: 10.1002/ijc.25615. Epub 2010 Oct 8.
4
Computer-aided prognosis: predicting patient and disease outcome via quantitative fusion of multi-scale, multi-modal data.
Comput Med Imaging Graph. 2011 Oct-Dec;35(7-8):506-14. doi: 10.1016/j.compmedimag.2011.01.008. Epub 2011 Feb 17.
5
Nuclear structure, organization, and oncogenesis.
J Gastrointest Cancer. 2011 Jun;42(2):112-7. doi: 10.1007/s12029-011-9253-5.
6
Nucleation of nuclear bodies by RNA.
Nat Cell Biol. 2011 Feb;13(2):167-73. doi: 10.1038/ncb2157. Epub 2011 Jan 16.
8
Chromatin dynamics and the repair of DNA double strand breaks.
Cell Cycle. 2011 Jan 15;10(2):261-7. doi: 10.4161/cc.10.2.14543.
9
Prostate cancer immunology - an update for Urologists.
BJU Int. 2011 Apr;107(7):1046-51. doi: 10.1111/j.1464-410X.2010.09820.x. Epub 2010 Nov 10.
10
Biogenesis of nuclear bodies.
Cold Spring Harb Perspect Biol. 2010 Dec;2(12):a000711. doi: 10.1101/cshperspect.a000711. Epub 2010 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验