Suppr超能文献

双变量竞争风险数据的累积发病率关联模型

Cumulative Incidence Association Models for Bivariate Competing Risks Data.

作者信息

Cheng Yu, Fine Jason P

机构信息

Department of Statistics and Department of Psychiatry, University of Pittsburgh Pittsburgh, PA, USA.

出版信息

J R Stat Soc Series B Stat Methodol. 2012 Mar 1;74(2):183-202. doi: 10.1111/j.1467-9868.2011.01012.x.

Abstract

Association models, like frailty and copula models, are frequently used to analyze clustered survival data and evaluate within-cluster associations. The assumption of noninformative censoring is commonly applied to these models, though it may not be true in many situations. In this paper, we consider bivariate competing risk data and focus on association models specified for the bivariate cumulative incidence function (CIF), a nonparametrically identifiable quantity. Copula models are proposed which relate the bivariate CIF to its corresponding univariate CIFs, similarly to independently right censored data, and accommodate frailty models for the bivariate CIF. Two estimating equations are developed to estimate the association parameter, permitting the univariate CIFs to be estimated either parametrically or nonparametrically. Goodness-of-fit tests are presented for formally evaluating the parametric models. Both estimators perform well with moderate sample sizes in simulation studies. The practical use of the methodology is illustrated in an analysis of dementia associations.

摘要

关联模型,如脆弱模型和copula模型,经常用于分析聚类生存数据并评估聚类内的关联性。非信息删失的假设通常应用于这些模型,尽管在许多情况下这可能并不成立。在本文中,我们考虑双变量竞争风险数据,并关注为双变量累积发病率函数(CIF)指定的关联模型,CIF是一个非参数可识别的量。我们提出了copula模型,它将双变量CIF与其相应的单变量CIF联系起来,类似于独立右删失数据,并为双变量CIF纳入脆弱模型。我们开发了两个估计方程来估计关联参数,允许单变量CIF以参数或非参数方式进行估计。我们提出了拟合优度检验,用于正式评估参数模型。在模拟研究中,这两种估计方法在中等样本量下都表现良好。通过对痴呆症关联性的分析说明了该方法的实际应用。

相似文献

1
Cumulative Incidence Association Models for Bivariate Competing Risks Data.
J R Stat Soc Series B Stat Methodol. 2012 Mar 1;74(2):183-202. doi: 10.1111/j.1467-9868.2011.01012.x.
3
A class of goodness of fit tests for a copula based on bivariate right-censored data.
Biom J. 2005 Dec;47(6):815-24. doi: 10.1002/bimj.200410163.
4
Association analysis of successive events data in the presence of competing risks.
Stat Methods Med Res. 2018 Jun;27(6):1661-1682. doi: 10.1177/0962280216667645. Epub 2016 Sep 19.
5
Nonparametric association analysis of exchangeable clustered competing risks data.
Biometrics. 2009 Jun;65(2):385-93. doi: 10.1111/j.1541-0420.2008.01072.x. Epub 2008 May 11.
6
Conditional copula models for right-censored clustered event time data.
Biostatistics. 2018 Apr 1;19(2):247-262. doi: 10.1093/biostatistics/kxx034.
7
Survival analysis in the presence of competing risks.
Ann Transl Med. 2017 Feb;5(3):47. doi: 10.21037/atm.2016.08.62.
8
Parametric likelihood inference for interval censored competing risks data.
Biometrics. 2014 Mar;70(1):1-9. doi: 10.1111/biom.12109. Epub 2014 Jan 8.
9
Nonparametric analysis of bivariate gap time with competing risks.
Biometrics. 2016 Sep;72(3):780-90. doi: 10.1111/biom.12494. Epub 2016 Mar 18.
10
Factor copula models for right-censored clustered survival data.
Lifetime Data Anal. 2021 Jul;27(3):499-535. doi: 10.1007/s10985-021-09525-5. Epub 2021 Jun 14.

引用本文的文献

1
Competing risk multistate censored data modeling by propensity score matching method.
Sci Rep. 2024 Feb 22;14(1):4368. doi: 10.1038/s41598-024-54149-y.
2
A causal framework for classical statistical estimands in failure-time settings with competing events.
Stat Med. 2020 Apr 15;39(8):1199-1236. doi: 10.1002/sim.8471. Epub 2020 Jan 27.
3
Multiple event times in the presence of informative censoring: modeling and analysis by copulas.
Lifetime Data Anal. 2020 Jul;26(3):573-602. doi: 10.1007/s10985-019-09490-0. Epub 2019 Nov 15.
4
A Bayesian joint model of recurrent events and a terminal event.
Biom J. 2019 Jan;61(1):187-202. doi: 10.1002/bimj.201700326. Epub 2018 Nov 26.
5
Methods for generating paired competing risks data.
Comput Methods Programs Biomed. 2016 Oct;135:199-207. doi: 10.1016/j.cmpb.2016.07.027. Epub 2016 Jul 25.
6
Absolute risk regression for competing risks: interpretation, link functions, and prediction.
Stat Med. 2012 Dec 20;31(29):3921-30. doi: 10.1002/sim.5459. Epub 2012 Aug 2.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验