Suppr超能文献

竞争风险的绝对风险回归:解释、链接函数和预测。

Absolute risk regression for competing risks: interpretation, link functions, and prediction.

机构信息

Department of Biostatistics, University of Copenhagen, Denmark.

出版信息

Stat Med. 2012 Dec 20;31(29):3921-30. doi: 10.1002/sim.5459. Epub 2012 Aug 2.

Abstract

In survival analysis with competing risks, the transformation model allows different functions between the outcome and explanatory variables. However, the model's prediction accuracy and the interpretation of parameters may be sensitive to the choice of link function. We review the practical implications of different link functions for regression of the absolute risk (or cumulative incidence) of an event. Specifically, we consider models in which the regression coefficients β have the following interpretation: The probability of dying from cause D during the next t years changes with a factor exp(β) for a one unit change of the corresponding predictor variable, given fixed values for the other predictor variables. The models have a direct interpretation for the predictive ability of the risk factors. We propose some tools to justify the models in comparison with traditional approaches that combine a series of cause-specific Cox regression models or use the Fine-Gray model. We illustrate the methods with the use of bone marrow transplant data.

摘要

在存在竞争风险的生存分析中,转换模型允许结局和解释变量之间存在不同的函数关系。然而,模型的预测准确性和参数的解释可能对连接函数的选择敏感。我们回顾了不同连接函数对事件绝对风险(或累积发生率)回归的实际影响。具体来说,我们考虑了以下模型:回归系数β具有以下解释:在给定其他预测变量固定值的情况下,下一个 t 年内因 D 死亡的概率,对于对应预测变量的一个单位变化,会发生 exp(β)倍的变化。这些模型对于风险因素的预测能力有直接的解释。与传统方法相比,我们提出了一些工具来证明这些模型的合理性,传统方法通常是结合一系列特定原因的 Cox 回归模型或使用 Fine-Gray 模型。我们使用骨髓移植数据来说明这些方法。

相似文献

1
Absolute risk regression for competing risks: interpretation, link functions, and prediction.
Stat Med. 2012 Dec 20;31(29):3921-30. doi: 10.1002/sim.5459. Epub 2012 Aug 2.
2
Flexible competing risks regression modeling and goodness-of-fit.
Lifetime Data Anal. 2008 Dec;14(4):464-83. doi: 10.1007/s10985-008-9094-0. Epub 2008 Aug 28.
3
The proportional odds cumulative incidence model for competing risks.
Biometrics. 2015 Sep;71(3):687-95. doi: 10.1111/biom.12330. Epub 2015 May 26.
4
Practical recommendations for reporting Fine-Gray model analyses for competing risk data.
Stat Med. 2017 Nov 30;36(27):4391-4400. doi: 10.1002/sim.7501. Epub 2017 Sep 15.
5
Dynamic pseudo-observations: a robust approach to dynamic prediction in competing risks.
Biometrics. 2013 Dec;69(4):1043-52. doi: 10.1111/biom.12061. Epub 2013 Jul 19.
6
7
Tree-based models for survival data with competing risks.
Comput Methods Programs Biomed. 2018 Jun;159:185-198. doi: 10.1016/j.cmpb.2018.03.017. Epub 2018 Mar 21.
9
Reduced rank proportional hazards model for competing risks.
Biostatistics. 2005 Jul;6(3):465-78. doi: 10.1093/biostatistics/kxi022. Epub 2005 Apr 14.

引用本文的文献

1
Sarcopenia and cardiovascular disease among adults with cardiovascular-kidney-metabolic syndrome stages 0-3: A prospective cohort study.
Am J Prev Cardiol. 2025 Jul 18;23:101060. doi: 10.1016/j.ajpc.2025.101060. eCollection 2025 Sep.
2
Baseline and changes in cardiometabolic index and incident cardiovascular disease in two prospective cohorts.
Am J Prev Cardiol. 2025 Jun 17;23:101046. doi: 10.1016/j.ajpc.2025.101046. eCollection 2025 Sep.
3
Sweetened Beverages and Incident All-Cause Dementia Among Older Adults.
JAMA Psychiatry. 2025 Jun 18. doi: 10.1001/jamapsychiatry.2025.1230.
4
Sodium bicarbonate administration for metabolic acidosis in the intensive care unit: a target trial emulation.
Intensive Care Med. 2025 Jun;51(6):1-9. doi: 10.1007/s00134-025-07979-x. Epub 2025 Jun 10.
5
Association of cardiovascular-kidney-metabolic syndrome with all-cause and cardiovascular mortality: A prospective cohort study.
Am J Prev Cardiol. 2025 Mar 29;22:100985. doi: 10.1016/j.ajpc.2025.100985. eCollection 2025 Jun.
6
Prostate Cancer Mortality in Men Aged 70 Years Who Recently Underwent Prostate-Specific Antigen Screening.
JAMA Netw Open. 2025 Feb 3;8(2):e2459766. doi: 10.1001/jamanetworkopen.2024.59766.

本文引用的文献

2
Cumulative Incidence Association Models for Bivariate Competing Risks Data.
J R Stat Soc Series B Stat Methodol. 2012 Mar 1;74(2):183-202. doi: 10.1111/j.1467-9868.2011.01012.x.
3
Competing risks in epidemiology: possibilities and pitfalls.
Int J Epidemiol. 2012 Jun;41(3):861-70. doi: 10.1093/ije/dyr213. Epub 2012 Jan 9.
4
Interpretability and importance of functionals in competing risks and multistate models.
Stat Med. 2012 May 20;31(11-12):1074-88. doi: 10.1002/sim.4385. Epub 2011 Nov 14.
5
Relative risk regression: reliable and flexible methods for log-binomial models.
Biostatistics. 2012 Jan;13(1):179-92. doi: 10.1093/biostatistics/kxr030. Epub 2011 Sep 13.
6
Quantifying the predictive accuracy of time-to-event models in the presence of competing risks.
Biom J. 2011 Feb;53(1):88-112. doi: 10.1002/bimj.201000073. Epub 2011 Jan 14.
7
Pseudo-observations in survival analysis.
Stat Methods Med Res. 2010 Feb;19(1):71-99. doi: 10.1177/0962280209105020. Epub 2009 Aug 4.
8
Boosting for high-dimensional time-to-event data with competing risks.
Bioinformatics. 2009 Apr 1;25(7):890-6. doi: 10.1093/bioinformatics/btp088. Epub 2009 Feb 25.
9
Flexible competing risks regression modeling and goodness-of-fit.
Lifetime Data Anal. 2008 Dec;14(4):464-83. doi: 10.1007/s10985-008-9094-0. Epub 2008 Aug 28.
10
Summarizing differences in cumulative incidence functions.
Stat Med. 2008 Oct 30;27(24):4939-49. doi: 10.1002/sim.3339.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验