Department of Biostatistics, University of Copenhagen, Denmark.
Stat Med. 2012 Dec 20;31(29):3921-30. doi: 10.1002/sim.5459. Epub 2012 Aug 2.
In survival analysis with competing risks, the transformation model allows different functions between the outcome and explanatory variables. However, the model's prediction accuracy and the interpretation of parameters may be sensitive to the choice of link function. We review the practical implications of different link functions for regression of the absolute risk (or cumulative incidence) of an event. Specifically, we consider models in which the regression coefficients β have the following interpretation: The probability of dying from cause D during the next t years changes with a factor exp(β) for a one unit change of the corresponding predictor variable, given fixed values for the other predictor variables. The models have a direct interpretation for the predictive ability of the risk factors. We propose some tools to justify the models in comparison with traditional approaches that combine a series of cause-specific Cox regression models or use the Fine-Gray model. We illustrate the methods with the use of bone marrow transplant data.
在存在竞争风险的生存分析中,转换模型允许结局和解释变量之间存在不同的函数关系。然而,模型的预测准确性和参数的解释可能对连接函数的选择敏感。我们回顾了不同连接函数对事件绝对风险(或累积发生率)回归的实际影响。具体来说,我们考虑了以下模型:回归系数β具有以下解释:在给定其他预测变量固定值的情况下,下一个 t 年内因 D 死亡的概率,对于对应预测变量的一个单位变化,会发生 exp(β)倍的变化。这些模型对于风险因素的预测能力有直接的解释。与传统方法相比,我们提出了一些工具来证明这些模型的合理性,传统方法通常是结合一系列特定原因的 Cox 回归模型或使用 Fine-Gray 模型。我们使用骨髓移植数据来说明这些方法。