Suppr超能文献

基于区域匹配的粒子滤波用于部分遮挡和尺度变化目标的跟踪

Particle Filtering with Region-based Matching for Tracking of Partially Occluded and Scaled Targets.

作者信息

Nakhmani Arie, Tannenbaum Allen

机构信息

Electrical Engineering Department, Technion, Haifa, 32000, Israel (

出版信息

SIAM J Imaging Sci. 2011 Mar 9;4(1):220-242. doi: 10.1137/090779280.

Abstract

Visual tracking of arbitrary targets in clutter is important for a wide range of military and civilian applications. We propose a general framework for the tracking of scaled and partially occluded targets, which do not necessarily have prominent features. The algorithm proposed in the present paper utilizes a modified normalized cross-correlation as the likelihood for a particle filter. The algorithm divides the template, selected by the user in the first video frame, into numerous patches. The matching process of these patches by particle filtering allows one to handle the target's occlusions and scaling. Experimental results with fixed rectangular templates show that the method is reliable for videos with nonstationary, noisy, and cluttered background, and provides accurate trajectories in cases of target translation, scaling, and occlusion.

摘要

在杂乱环境中对任意目标进行视觉跟踪对于广泛的军事和民用应用都很重要。我们提出了一个用于跟踪缩放和部分遮挡目标的通用框架,这些目标不一定具有突出特征。本文提出的算法利用改进的归一化互相关作为粒子滤波器的似然度。该算法将用户在第一个视频帧中选择的模板划分为多个小块。通过粒子滤波对这些小块进行匹配处理,能够处理目标的遮挡和缩放情况。使用固定矩形模板的实验结果表明,该方法对于具有非平稳、嘈杂和杂乱背景的视频是可靠的,并且在目标平移、缩放和遮挡的情况下能够提供准确的轨迹。

相似文献

1
Particle Filtering with Region-based Matching for Tracking of Partially Occluded and Scaled Targets.
SIAM J Imaging Sci. 2011 Mar 9;4(1):220-242. doi: 10.1137/090779280.
2
Patchwise joint sparse tracking with occlusion detection.
IEEE Trans Image Process. 2014 Oct;23(10):4496-510. doi: 10.1109/TIP.2014.2346029. Epub 2014 Aug 7.
3
Robust visual tracking and vehicle classification via sparse representation.
IEEE Trans Pattern Anal Mach Intell. 2011 Nov;33(11):2259-72. doi: 10.1109/TPAMI.2011.66.
4
Improved Camshift object tracking algorithm in occluded scenes based on AKAZE and Kalman.
Multimed Tools Appl. 2022;81(2):2145-2159. doi: 10.1007/s11042-021-11673-7. Epub 2021 Oct 20.
5
Spatio-temporal auxiliary particle filtering with l1-norm-based appearance model learning for robust visual tracking.
IEEE Trans Image Process. 2013 Feb;22(2):511-22. doi: 10.1109/TIP.2012.2218824. Epub 2012 Sep 13.
6
Robust Measurement-Driven Cardinality Balance Multi-Target Multi-Bernoulli Filter.
Sensors (Basel). 2021 Aug 25;21(17):5717. doi: 10.3390/s21175717.
7
Multi-Feature Single Target Robust Tracking Fused with Particle Filter.
Sensors (Basel). 2022 Feb 27;22(5):1879. doi: 10.3390/s22051879.
8
Real-Time Tracking Target System Based on Kernelized Correlation Filter in Complicated Areas.
Sensors (Basel). 2024 Oct 13;24(20):6600. doi: 10.3390/s24206600.
9
Object tracking and target reacquisition based on 3-D range data for moving vehicles.
IEEE Trans Image Process. 2011 Oct;20(10):2912-24. doi: 10.1109/TIP.2011.2142002. Epub 2011 Apr 11.
10
Toward Occlusion Handling in Visual Tracking via Probabilistic Finite State Machines.
IEEE Trans Cybern. 2020 Apr;50(4):1726-1738. doi: 10.1109/TCYB.2018.2884007. Epub 2018 Dec 20.

本文引用的文献

1
The template update problem.
IEEE Trans Pattern Anal Mach Intell. 2004 Jun;26(6):810-5. doi: 10.1109/TPAMI.2004.16.
2
Adaptive object tracking based on an effective appearance filter.
IEEE Trans Pattern Anal Mach Intell. 2007 Sep;29(9):1661-7. doi: 10.1109/TPAMI.2007.1112.
3
A generic framework for tracking using particle filter with dynamic shape prior.
IEEE Trans Image Process. 2007 May;16(5):1370-82. doi: 10.1109/tip.2007.894244.
4
Probabilistic fusion of stereo with color and contrast for bilayer segmentation.
IEEE Trans Pattern Anal Mach Intell. 2006 Sep;28(9):1480-92. doi: 10.1109/TPAMI.2006.193.
5
On the Euclidean distance of images.
IEEE Trans Pattern Anal Mach Intell. 2005 Aug;27(8):1334-9. doi: 10.1109/TPAMI.2005.165.
6
Fast occluded object tracking by a robust appearance filter.
IEEE Trans Pattern Anal Mach Intell. 2004 Aug;26(8):1099-104. doi: 10.1109/TPAMI.2004.45.
7
Visual tracking and recognition using appearance-adaptive models in particle filters.
IEEE Trans Image Process. 2004 Nov;13(11):1491-506. doi: 10.1109/tip.2004.836152.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验