Najafpour Mohammad Mahdi, Moghaddam Atefeh Nemati, Allakhverdiev Suleyman I
Department of Chemistry, Institute for Advanced Studies in Basic Sciences, Zanjan, Iran.
Biochim Biophys Acta. 2012 Aug;1817(8):1110-21. doi: 10.1016/j.bbabio.2012.04.002. Epub 2012 Apr 10.
Hydrogen production by water splitting may be an appealing solution for future energy needs. To evolve hydrogen efficiently in a sustainable manner, it is necessary first to synthesize what we may call a 'super catalyst' for water oxidation, which is the more challenging half reaction of water splitting. An efficient system for water oxidation exists in the water oxidizing complex in cyanobacteria, algae and plants; further, recently published data on the Manganese-calcium cluster have provided details on the mechanism and structure of the water oxidizing complex. Here, we have briefly reviewed the characteristics of the natural system from the standpoint of what we could learn from it to produce an efficient artificial system. In short, to design an efficient water oxidizing complex for artificial photosynthesis, we must learn and use wisely the knowledge about water oxidation and the water oxidizing complex in the natural system. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
通过水分解制氢可能是满足未来能源需求的一个有吸引力的解决方案。为了以可持续的方式高效地产生氢气,首先有必要合成一种我们可以称之为水氧化“超级催化剂”的物质,这是水分解中更具挑战性的半反应。在蓝细菌、藻类和植物的水氧化复合物中存在一种高效的水氧化系统;此外,最近发表的关于锰钙簇的数据提供了水氧化复合物的机制和结构的详细信息。在这里,我们从可以从自然系统中学到什么以产生高效人工系统的角度简要回顾了自然系统的特征。简而言之,为了设计用于人工光合作用的高效水氧化复合物,我们必须学习并明智地利用关于自然系统中水氧化和水氧化复合物的知识。本文是名为:可持续性光合作用研究:从自然到人工的特刊的一部分。