Suppr超能文献

用于传递函数探索与设计的抽象属性空间

Abstracting Attribute Space for Transfer Function Exploration and Design.

作者信息

Maciejewski Ross, Jang Yun, Woo Insoo, Jänicke Heike, Gaither Kelly P, Ebert David S

出版信息

IEEE Trans Vis Comput Graph. 2013 Jan;19(1):94-107. doi: 10.1109/TVCG.2012.105. Epub 2012 Apr 17.

Abstract

Currently, user centered transfer function design begins with the user interacting with a one or two-dimensional histogram of the volumetric attribute space. The attribute space is visualized as a function of the number of voxels, allowing the user to explore the data in terms of the attribute size/magnitude. However, such visualizations provide the user with no information on the relationship between various attribute spaces (e.g., density, temperature, pressure, x, y, z) within the multivariate data. In this work, we propose a modification to the attribute space visualization in which the user is no longer presented with the magnitude of the attribute; instead, the user is presented with an information metric detailing the relationship between attributes of the multivariate volumetric data. In this way, the user can guide their exploration based on the relationship between the attribute magnitude and user selected attribute information as opposed to being constrained by only visualizing the magnitude of the attribute. We refer to this modification to the traditional histogram widget as an abstract attribute space representation. Our system utilizes common one and two-dimensional histogram widgets where the bins of the abstract attribute space now correspond to an attribute relationship in terms of the mean, standard deviation, entropy, or skewness. In this manner, we exploit the relationships and correlations present in the underlying data with respect to the dimension(s) under examination. These relationships are often times key to insight and allow us to guide attribute discovery as opposed to automatic extraction schemes which try to calculate and extract distinct attributes a priori. In this way, our system aids in the knowledge discovery of the interaction of properties within volumetric data.

摘要

目前,以用户为中心的传递函数设计始于用户与体属性空间的一维或二维直方图进行交互。属性空间被可视化为体素数量的函数,允许用户根据属性大小/量级来探索数据。然而,这样的可视化并未向用户提供关于多变量数据中各种属性空间(例如密度、温度、压力、x、y、z)之间关系的任何信息。在这项工作中,我们提出对属性空间可视化进行修改,其中不再向用户呈现属性的量级;相反,向用户呈现一个详细说明多变量体数据属性之间关系的信息度量。通过这种方式,用户可以基于属性量级与用户选择的属性信息之间的关系来指导他们的探索,而不是仅受限于可视化属性的量级。我们将对传统直方图小部件的这种修改称为抽象属性空间表示。我们的系统利用常见的一维和二维直方图小部件,其中抽象属性空间的 bins 现在对应于均值、标准差、熵或偏度方面的属性关系。通过这种方式,我们利用基础数据中与所检查维度相关的关系和相关性。这些关系通常是洞察的关键,并且使我们能够指导属性发现,这与试图先验地计算和提取不同属性的自动提取方案相反。通过这种方式,我们的系统有助于在体数据中发现属性之间相互作用的知识。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验