Joint Graduate Group in Bioengineering, University of California, Berkeley/University of California, San Francisco, CA 94158, USA.
Proc Natl Acad Sci U S A. 2012 May 1;109(18):7085-90. doi: 10.1073/pnas.1120788109. Epub 2012 Apr 16.
Bacterial genes associated with a single trait are often grouped in a contiguous unit of the genome known as a gene cluster. It is difficult to genetically manipulate many gene clusters because of complex, redundant, and integrated host regulation. We have developed a systematic approach to completely specify the genetics of a gene cluster by rebuilding it from the bottom up using only synthetic, well-characterized parts. This process removes all native regulation, including that which is undiscovered. First, all noncoding DNA, regulatory proteins, and nonessential genes are removed. The codons of essential genes are changed to create a DNA sequence as divergent as possible from the wild-type (WT) gene. Recoded genes are computationally scanned to eliminate internal regulation. They are organized into operons and placed under the control of synthetic parts (promoters, ribosome binding sites, and terminators) that are functionally separated by spacer parts. Finally, a controller consisting of genetic sensors and circuits regulates the conditions and dynamics of gene expression. We applied this approach to an agriculturally relevant gene cluster from Klebsiella oxytoca encoding the nitrogen fixation pathway for converting atmospheric N(2) to ammonia. The native gene cluster consists of 20 genes in seven operons and is encoded in 23.5 kb of DNA. We constructed a "refactored" gene cluster that shares little DNA sequence identity with WT and for which the function of every genetic part is defined. This work demonstrates the potential for synthetic biology tools to rewrite the genetics encoding complex biological functions to facilitate access, engineering, and transferability.
与单一性状相关的细菌基因通常聚集在基因组的一个连续单元中,称为基因簇。由于宿主的复杂、冗余和整合调控,许多基因簇很难进行遗传操作。我们开发了一种系统的方法,通过仅使用合成的、特征明确的元件从底部重建基因簇,从而完全指定基因簇的遗传学特性。这个过程去除了所有的天然调控,包括未被发现的调控。首先,去除所有非编码 DNA、调节蛋白和非必需基因。必需基因的密码子被改变,以创建与野生型(WT)基因尽可能不同的 DNA 序列。经过重新编码的基因经过计算扫描,以消除内部调控。它们被组织成操纵子,并置于合成元件(启动子、核糖体结合位点和终止子)的控制下,这些元件通过间隔元件在功能上分离。最后,一个由遗传传感器和电路组成的控制器调节基因表达的条件和动态。我们将这种方法应用于源自产酸克雷伯氏菌的与农业相关的基因簇,该基因簇编码将大气 N(2)转化为氨的固氮途径。天然基因簇由七个操纵子中的 20 个基因组成,编码在 23.5kb 的 DNA 中。我们构建了一个“重构”基因簇,它与 WT 的 DNA 序列同一性很小,并且每个遗传元件的功能都已定义。这项工作展示了合成生物学工具改写编码复杂生物功能的遗传学的潜力,以促进获取、工程设计和可转移性。