Institut Sophia Agrobiotech, UMR 1355 ISA, Institut National de la Recherche Agronomique, Sophia-Antipolis, France.
PLoS One. 2012;7(4):e34889. doi: 10.1371/journal.pone.0034889. Epub 2012 Apr 11.
The cliff-edge hypothesis introduces the counterintuitive idea that the trait value associated with the maximum of an asymmetrical fitness function is not necessarily the value that is selected for if the trait shows variability in its phenotypic expression. We develop a model of population dynamics to show that, in such a system, the evolutionary stable strategy depends on both the shape of the fitness function around its maximum and the amount of phenotypic variance. The model provides quantitative predictions of the expected trait value distribution and provides an alternative quantity that should be maximized ("genotype fitness") instead of the classical fitness function ("phenotype fitness"). We test the model's predictions on three examples: (1) litter size in guinea pigs, (2) sexual selection in damselflies, and (3) the geometry of the human lung. In all three cases, the model's predictions give a closer match to empirical data than traditional optimization theory models. Our model can be extended to most ecological situations, and the evolutionary conditions for its application are expected to be common in nature.
悬崖边缘假说引入了一个反直觉的观点,即如果特征在表型表达上具有可变性,那么与不对称适应度函数最大值相关的特征值不一定是被选择的特征值。我们开发了一个种群动态模型来表明,在这样的系统中,进化稳定策略取决于适应度函数在最大值周围的形状和表型方差的大小。该模型对预期特征值分布提供了定量预测,并提供了一个应该最大化的替代数量(“基因型适应度”),而不是经典的适应度函数(“表型适应度”)。我们在三个例子上测试了模型的预测:(1)豚鼠的窝仔数,(2)蜻蜓的性选择,(3)人类肺部的几何形状。在所有三个例子中,模型的预测比传统的优化理论模型更符合经验数据。我们的模型可以扩展到大多数生态情况,并且预计其应用的进化条件在自然界中很常见。