Suppr超能文献

三维物体单视角匹配新方法。

New methods for matching 3-d objects with single perspective views.

机构信息

LIFIA, BP 68, 38402 Saint-Martin d'Hères, France.

出版信息

IEEE Trans Pattern Anal Mach Intell. 1987 Mar;9(3):401-12. doi: 10.1109/tpami.1987.4767922.

Abstract

In this paper we analyze the ability of a computer vision system to derive properties of the three-dimensional (3-D) physical world from viewing two-dimensional (2-D) images. We present a new approach which consists of a model-based interpretation of a single perspective image. Image linear features and linear feature sets are backprojected onto the 3-D space and geometric models are then used for selecting possible solutions. The paper treats two situations: 1) interpretation of scenes resulting from a simple geometric structure (orthogonality) in which case we seek to determine the orientation of this structure relatively to the viewer (three rotations) and 2) recognition of moderately complex objects whose shapes (geometrical and topological properties) are provided in advance. The recognition technique is limited to objects containing, among others, straight edges and planar faces. In the first case the computation can be carried out by a parallel algorithm which selects the solution that has received the largest number of votes (accumulation space). In the second case an object is uniquely assigned to a set of image features through a search strategy. As a by-product, the spatial position and orientation (six degrees of freedom) of each recognized object is determined as well. The method is valid over a wide range of perspective images and it does not require perfect low-level image segmentation. It has been successfully implemented for recognizing a class of industrial parts.

摘要

在本文中,我们分析了计算机视觉系统从二维(2-D)图像中获取三维(3-D)物理世界属性的能力。我们提出了一种新的方法,该方法由对单个透视图的基于模型的解释组成。图像线性特征和线性特征集被反向投影到 3-D 空间,然后使用几何模型选择可能的解决方案。本文处理了两种情况:1)解释简单几何结构(正交性)产生的场景,在这种情况下,我们试图确定该结构相对于观察者的方向(三个旋转);2)识别形状(几何和拓扑属性)预先提供的中等复杂的物体。识别技术仅限于包含直线边和平直面等形状的物体。在第一种情况下,计算可以通过并行算法进行,该算法选择获得最多票数的解决方案(累加空间)。在第二种情况下,通过搜索策略将物体唯一分配给一组图像特征。作为副产品,还确定了每个识别物体的空间位置和方向(六个自由度)。该方法适用于广泛的透视图像,并且不需要完美的低级图像分割。它已成功用于识别一类工业零件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验