Institut für Thermodynamik, Technische Universität Braunschweig , Hans-Sommer-Str. 5, 38106 Braunschweig, Germany.
J Phys Chem B. 2012 May 17;116(19):5744-51. doi: 10.1021/jp300991t. Epub 2012 May 4.
Different fluoropropenes are currently considered as refrigerants, either as pure compounds or as components in low GWP (global warming potential) refrigerant mixtures. Due to their limited commercial production, experimental data for the thermophysical properties of fluoropropenes and their mixtures are in general rare, which hampers the exploration of their performance in technical applications. In principle, molecular simulation can be used to predict the relevant properties of refrigerants and refrigerant blends, provided that adequate intermolecular potential functions ("force fields") are available. In our earlier work (Raabe, G.; Maginn, E. J., J. Phys. Chem. B2010, 114, 10133-10142), we introduced a transferable force field for fluoropropenes comprising the compounds 3,3,3-trifluoro-1-propene (HFO-1243zf), 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), and hexafluoro-1-propene (HFO-1216). In this paper, we provide an extension of the force field model to the trans- and cis-1,3,3,3-tetrafluoro-1-propene (HFO-1234ze(E), HFO-1234ze) and the cis-1,2,3,3,3-pentafluoro-1-propene (HFO-1225ye(Z)) as well as revised simulation results for HFO-1216. We present Gibbs ensemble simulation results on the vapor pressures, saturated densities, and heats of vaporization of these compounds in comparison with experimental results. The simulation results show that the force field model enables reliable predictions of the properties of the different fluoropropenes and also reproduces well the differing vapor-liquid coexistence and vapor pressure curve of the cis- and trans-isomers of 1,3,3,3-tetrafluoro-1-propene, HFO-1234ze and HFO-1234ze(E). For these two isomers, we also present molecular dynamics simulation studies on their local structure.
不同的氟丙烯目前被认为是制冷剂,无论是作为纯化合物还是作为低全球变暖潜能值(GWP)制冷剂混合物的成分。由于其商业生产有限,氟丙烯及其混合物的热物理性质的实验数据通常很少,这阻碍了它们在技术应用中的性能的探索。原则上,可以使用分子模拟来预测制冷剂和制冷剂混合物的相关性质,只要有足够的分子间势能函数(“力场”)即可。在我们之前的工作中(Raabe,G.;Maginn,E. J.,J. Phys. Chem. B2010,114,10133-10142),我们引入了一种可用于氟丙烯的可转移力场,该力场包括化合物 3,3,3-三氟-1-丙烯(HFO-1243zf)、2,3,3,3-四氟-1-丙烯(HFO-1234yf)和六氟-1-丙烯(HFO-1216)。在本文中,我们将力场模型扩展到顺式和反式 1,3,3,3-四氟-1-丙烯(HFO-1234ze(E),HFO-1234ze)以及顺式 1,2,3,3,3-五氟-1-丙烯(HFO-1225ye(Z)),并对 HFO-1216 的模拟结果进行了修订。我们给出了这些化合物的蒸气压、饱和密度和蒸发热的吉布斯系综模拟结果,并与实验结果进行了比较。模拟结果表明,力场模型能够可靠地预测不同氟丙烯的性质,并且还很好地再现了顺式和反式 1,3,3,3-四氟-1-丙烯(HFO-1234ze 和 HFO-1234ze(E))异构体的蒸-液共存和蒸气压曲线的差异。对于这两个异构体,我们还进行了它们的局部结构的分子动力学模拟研究。