Suppr超能文献

用于分子流体模拟的 SAFT-γ 力场:2. 温室气体、制冷剂和长链烷烃的粗粒模型。

SAFT-γ force field for the simulation of molecular fluids: 2. Coarse-grained models of greenhouse gases, refrigerants, and long alkanes.

机构信息

Department of Chemical Engineering, Centre for Process Systems Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, United Kingdom.

出版信息

J Phys Chem B. 2013 Mar 7;117(9):2717-33. doi: 10.1021/jp306442b. Epub 2013 Feb 27.

Abstract

In the first paper of this series [C. Avendaño, T. Lafitte, A. Galindo, C. S. Adjiman, G. Jackson, and E. A. Müller, J. Phys. Chem. B2011, 115, 11154] we introduced the SAFT-γ force field for molecular simulation of fluids. In our approach, a molecular-based equation of state (EoS) is used to obtain coarse-grained (CG) intermolecular potentials that can then be employed in molecular simulation over a wide range of thermodynamic conditions of the fluid. The macroscopic experimental data for the vapor-liquid equilibria (saturated liquid density and vapor pressure) of a given system are represented with the SAFT-VR Mie EoS and used to estimate effective intermolecular parameters that provide a good description of the thermodynamic properties by exploring a wide parameter space for models based on the Mie (generalized Lennard-Jones) potential. This methodology was first used to develop a simple single-segment CG Mie model of carbon dioxide (CO2) which allows for a reliable representation of the fluid-phase equilibria (for which the model was parametrized), as well as an accurate prediction of other properties such as the enthalpy of vaporization, interfacial tension, supercritical density, and second-derivative thermodynamic properties (thermal expansivity, isothermal compressibility, heat capacity, Joule-Thomson coefficient, and speed of sound). In our current paper, the methodology is further applied and extended to develop effective SAFT-γ CG Mie force fields for some important greenhouse gases including carbon tetrafluoride (CF4) and sulfur hexafluoride (SF6), modeled as simple spherical molecules, and for long linear alkanes including n-decane (n-C10H22) and n-eicosane (n-C20H42), modeled as homonuclear chains of spherical Mie segments. We also apply the SAFT-γ methodology to obtain a CG homonuclear two-segment Mie intermolecular potential for the more challenging polar and asymmetric compound 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), a novel replacement refrigerant with promising properties. The description of the fluid-phase behavior and the prediction of the other thermophysical properties obtained by molecular simulation using our SAFT-γ CG Mie force fields are found to be of comparable quality (and sometimes superior) to that obtained using the more sophisticated all-atom (AA) and united-atom (UA) models commonly employed in the field. We should emphasize that though the focus of our current work is on simple homonuclear models, the SAFT-γ methodology is based on a group contribution methodology which is naturally suited to the development of more sophisticated heteronuclear models.

摘要

在本系列的第一篇论文中 [C. Avendaño, T. Lafitte, A. Galindo, C. S. Adjiman, G. Jackson, and E. A. Müller, J. Phys. Chem. B2011, 115, 11154],我们介绍了用于流体分子模拟的 SAFT-γ 力场。在我们的方法中,使用基于分子的状态方程 (EoS) 来获得粗粒化 (CG) 分子间势,然后可以在流体的广泛热力学条件下在分子模拟中使用这些势。给定系统的汽液平衡(饱和液体密度和蒸气压)的宏观实验数据由 SAFT-VR Mie EoS 表示,并用于估计有效分子间参数,这些参数通过探索基于 Mie(广义 Lennard-Jones)势的模型的广泛参数空间,可提供对热力学性质的良好描述。该方法最初用于开发简单的单段 CG Mie 二氧化碳 (CO2) 模型,该模型能够可靠地表示流体相平衡(模型就是针对该相平衡进行参数化的),以及准确预测其他性质,如蒸发热、界面张力、超临界密度和二阶热力学性质(热膨胀系数、等温压缩系数、热容、焦耳-汤姆逊系数和声速)。在我们当前的论文中,该方法进一步应用和扩展到为一些重要的温室气体(包括四氟化碳 (CF4) 和六氟化硫 (SF6))开发有效的 SAFT-γ CG Mie 力场,这些气体被建模为简单的球形分子,以及为长直链烷烃(包括正癸烷 (n-C10H22) 和二十烷 (n-C20H42))开发有效的 SAFT-γ CG Mie 力场,这些烷烃被建模为球形 Mie 片段的同核链。我们还应用 SAFT-γ 方法为更具挑战性的极性和不对称化合物 2,3,3,3-四氟-1-丙烯 (HFO-1234yf) 获得 CG 同核两段 Mie 分子间势,这是一种具有有前途特性的新型替代制冷剂。通过使用我们的 SAFT-γ CG Mie 力场进行分子模拟获得的流体相行为描述和其他热物理性质预测被发现质量相当(有时甚至更高)于该领域常用的更复杂的全原子 (AA) 和统一原子 (UA) 模型。我们应该强调的是,尽管我们当前工作的重点是简单的同核模型,但 SAFT-γ 方法基于基团贡献方法,该方法自然适用于更复杂的异核模型的开发。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验