Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada.
Toxicol Sci. 2012 Jul;128(1):272-83. doi: 10.1093/toxsci/kfs138. Epub 2012 Apr 20.
Methylmercury (MeHg) is a potent neurotoxin, teratogen, and probable carcinogen, but the underlying mechanisms of its actions remain unclear. Although MeHg causes several types of DNA damage, the toxicological consequences of this macromolecular damage are unknown. MeHg enhances oxidative stress, which can cause various oxidative DNA lesions that are primarily repaired by oxoguanine glycosylase 1 (OGG1). Herein, we compared the response of wild-type and OGG1 null (Ogg1(-/-)) murine embryonic fibroblasts to environmentally relevant, low micromolar concentrations of MeHg by measuring clonogenic efficiency, cell cycle arrest, DNA double-strand breaks (DSBs), and activation of the DNA damage response pathway.Ogg1(-/-) cells exhibited greater sensitivity to MeHg than wild-type controls, as measured by the clonogenic assay, and showed a greater propensity for MeHg-initiated apoptosis. Both wild-type and Ogg1(-/-) cells underwent cell cycle arrest when exposed to micromolar concentrations of MeHg; however, the extent of DSBs was exacerbated in Ogg1(-/-) cells compared with that in wild-type controls. Pretreatment with the antioxidative enzyme catalase reduced levels of DSBs in both wild-type and Ogg1(-/-) cells but failed to block MeHg-initiated apoptosis at micromolar concentrations. Our findings implicate reactive oxygen species mediated DNA damage in the mechanism of MeHg toxicity; and demonstrate for the first time that impaired DNA repair capacity enhances cellular sensitivity to MeHg. Accordingly, the genotoxic properties of MeHg may contribute to its neurotoxic and teratogenic effects, and an individual's response to oxidative stress and DNA damage may constitute an important determinant of risk.
甲基汞(MeHg)是一种强效的神经毒素、致畸剂和可能的致癌剂,但它的作用机制仍不清楚。尽管 MeHg 会导致几种类型的 DNA 损伤,但这种大分子损伤的毒理学后果尚不清楚。MeHg 会增强氧化应激,从而导致各种主要由鸟嘌呤糖基化酶 1(OGG1)修复的氧化 DNA 损伤。在此,我们通过测量集落形成效率、细胞周期停滞、DNA 双链断裂(DSB)和 DNA 损伤反应途径的激活,比较了野生型和 OGG1 缺失(Ogg1(-/-))鼠胚胎成纤维细胞对环境相关的低微摩尔浓度 MeHg 的反应。OGG1(-/-)细胞比野生型对照更敏感,通过集落形成测定法测量,并且对 MeHg 引发的细胞凋亡的倾向性更大。当暴露于微摩尔浓度的 MeHg 时,野生型和 Ogg1(-/-)细胞都发生细胞周期停滞;然而,与野生型对照相比,OGG1(-/-)细胞中的 DSB 程度更为严重。抗氧化酶过氧化氢酶预处理可降低野生型和 Ogg1(-/-)细胞中的 DSB 水平,但未能阻止微摩尔浓度的 MeHg 引发的细胞凋亡。我们的研究结果表明,活性氧介导的 DNA 损伤参与了 MeHg 毒性的机制;并首次证明,DNA 修复能力受损会增强细胞对 MeHg 的敏感性。因此,MeHg 的遗传毒性特性可能有助于其神经毒性和致畸性作用,并且个体对氧化应激和 DNA 损伤的反应可能构成风险的重要决定因素。