Paul Flechsig Institute of Brain Research, Universität Leipzig, Jahnallee 59, 04109 Leipzig, Germany.
Mol Neurobiol. 2012 Aug;46(1):125-35. doi: 10.1007/s12035-012-8262-0. Epub 2012 Apr 13.
Alzheimer's disease (AD) is a chronic neurodegenerative disorder, characterized by synaptic degeneration associated with fibrillar aggregates of the amyloid-ß peptide and the microtubule-associated protein tau. The progression of neurofibrillary degeneration throughout the brain during AD follows a predictive pattern which provides the basis for the neuropathological staging of the disease. This pattern of selective neuronal vulnerability against neurofibrillary degeneration matches the regional degree of neuronal plasticity and inversely recapitulates ontogenetic and phylogenetic brain development which links neurodegenerative cell death to neuroplasticity and brain development. Here, we summarize recent evidence for a loss of neuronal differentiation control as a critical pathogenetic event in AD, associated with a reactivation of the cell cycle and a partial or full replication of DNA giving rise to neurons with a content of DNA above the diploid level. Neurons with an aneuploid set of chromosomes are also present at a low frequency in the normal brain where they appear to be well tolerated. In AD, however, where the number of aneuploid neurons is highly increased, a rather selective cell death of neurons with this chromosomal aberrancy occurs. This finding add aneuploidy to the list of critical molecular events that are shared between neurodegeneration and oncogenesis. It defines a molecular signature for neuronal vulnerability and directs our attention to a failure of neuronal differentiation control as a critical pathogenetic event and potential therapeutic target in AD.
阿尔茨海默病(AD)是一种慢性神经退行性疾病,其特征是与淀粉样蛋白-β肽和微管相关蛋白 tau 的纤维状聚集相关的突触退化。AD 期间大脑中神经纤维变性的进展遵循可预测的模式,为疾病的神经病理学分期提供了基础。这种针对神经纤维变性的选择性神经元易损性模式与神经元可塑性的区域程度相匹配,并反向再现了个体发生和系统发生的大脑发育,将神经退行性细胞死亡与神经可塑性和大脑发育联系起来。在这里,我们总结了最近关于神经元分化控制丧失作为 AD 中一个关键发病事件的证据,该事件与细胞周期的重新激活以及 DNA 的部分或完全复制有关,导致具有高于二倍体水平的 DNA 含量的神经元。在正常大脑中也存在具有非整倍体染色体组的神经元,但频率较低,且似乎可以耐受。然而,在 AD 中,具有这种染色体异常的神经元数量大大增加,出现了相当选择性的神经元死亡。这一发现将非整倍体添加到神经退行性变和肿瘤发生之间共享的关键分子事件列表中。它定义了神经元易损性的分子特征,并将我们的注意力集中在神经元分化控制失败作为 AD 中的一个关键发病事件和潜在治疗靶点上。