Suppr超能文献

早期四足动物的皮肤骨:适应陆地酸中毒的古生理假说。

Dermal bone in early tetrapods: a palaeophysiological hypothesis of adaptation for terrestrial acidosis.

机构信息

Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.

出版信息

Proc Biol Sci. 2012 Aug 7;279(1740):3035-40. doi: 10.1098/rspb.2012.0558. Epub 2012 Apr 25.

Abstract

The dermal bone sculpture of early, basal tetrapods of the Permo-Carboniferous is unlike the bone surface of any living vertebrate, and its function has long been obscure. Drawing from physiological studies of extant tetrapods, where dermal bone or other calcified tissues aid in regulating acid-base balance relating to hypercapnia (excess blood carbon dioxide) and/or lactate acidosis, we propose a similar function for these sculptured dermal bones in early tetrapods. Unlike the condition in modern reptiles, which experience hypercapnia when submerged in water, these animals would have experienced hypercapnia on land, owing to likely inefficient means of eliminating carbon dioxide. The different patterns of dermal bone sculpture in these tetrapods largely correlates with levels of terrestriality: sculpture is reduced or lost in stem amniotes that likely had the more efficient lung ventilation mode of costal aspiration, and in small-sized stem amphibians that would have been able to use the skin for gas exchange.

摘要

早古生代二叠纪的基干四足动物的真皮骨雕刻与任何现存脊椎动物的骨表面都不一样,其功能长期以来一直不为人知。借鉴现存四足动物的生理研究,其中真皮骨或其他钙化组织有助于调节与高碳酸血症(血液中二氧化碳过多)和/或乳酸酸中毒有关的酸碱平衡,我们提出了这些早期四足动物真皮骨的类似功能。与现代爬行动物在水中时经历高碳酸血症的情况不同,这些动物在陆地上会经历高碳酸血症,因为它们可能没有有效的二氧化碳清除方式。这些四足动物的真皮骨雕刻的不同模式在很大程度上与陆地生活程度相关:在具有更高效的肋间吸气式肺通气模式的基干羊膜动物和体型较小的基干两栖动物中,雕刻减少或消失,这些动物可能能够通过皮肤进行气体交换。

相似文献

1
Dermal bone in early tetrapods: a palaeophysiological hypothesis of adaptation for terrestrial acidosis.
Proc Biol Sci. 2012 Aug 7;279(1740):3035-40. doi: 10.1098/rspb.2012.0558. Epub 2012 Apr 25.
2
Palaeophysiology of pH regulation in tetrapods.
Philos Trans R Soc Lond B Biol Sci. 2020 Mar 2;375(1793):20190131. doi: 10.1098/rstb.2019.0131. Epub 2020 Jan 13.
3
Periodontal ligament, cementum, and alveolar bone in the oldest herbivorous tetrapods, and their evolutionary significance.
PLoS One. 2013 Sep 4;8(9):e74697. doi: 10.1371/journal.pone.0074697. eCollection 2013.
4
Developmental palaeontology of Reptilia as revealed by histological studies.
Semin Cell Dev Biol. 2010 Jun;21(4):462-70. doi: 10.1016/j.semcdb.2009.11.005. Epub 2009 Nov 11.
5
The oldest parareptile and the early diversification of reptiles.
Proc Biol Sci. 2015 Feb 22;282(1801):20141912. doi: 10.1098/rspb.2014.1912.
6
The evolution of dermal shield vascularization in Testudinata and Pseudosuchia: phylogenetic constraints versus ecophysiological adaptations.
Philos Trans R Soc Lond B Biol Sci. 2020 Mar 2;375(1793):20190132. doi: 10.1098/rstb.2019.0132. Epub 2020 Jan 13.
7
Ecophysiological steps of marine adaptation in extant and extinct non-avian tetrapods.
Biol Rev Camb Philos Soc. 2021 Oct;96(5):1769-1798. doi: 10.1111/brv.12724. Epub 2021 Apr 26.
8
The integumentary skeleton of tetrapods: origin, evolution, and development.
J Anat. 2009 Apr;214(4):441-64. doi: 10.1111/j.1469-7580.2008.01043.x.
9
New light shed on the early evolution of limb-bone growth plate and bone marrow.
Elife. 2021 Mar 2;10:e51581. doi: 10.7554/eLife.51581.

引用本文的文献

1
Microstructural architecture of the bony scutes, spine, and rays of the bony fins in the common pleco .
Int J Vet Sci Med. 2024 Sep 4;12(1):101-124. doi: 10.1080/23144599.2024.2374201. eCollection 2024.
2
A review of the osteoderms of lizards (Reptilia: Squamata).
Biol Rev Camb Philos Soc. 2022 Feb;97(1):1-19. doi: 10.1111/brv.12788. Epub 2021 Aug 16.
3
Palaeophysiology of pH regulation in tetrapods.
Philos Trans R Soc Lond B Biol Sci. 2020 Mar 2;375(1793):20190131. doi: 10.1098/rstb.2019.0131. Epub 2020 Jan 13.
4
Vertebrate palaeophysiology.
Philos Trans R Soc Lond B Biol Sci. 2020 Mar 2;375(1793):20190130. doi: 10.1098/rstb.2019.0130. Epub 2020 Jan 13.
5
Ornamentation of dermal bones of and its ecological implications.
PeerJ. 2018 Jul 31;6:e5267. doi: 10.7717/peerj.5267. eCollection 2018.
6
Does skull morphology constrain bone ornamentation? A morphometric analysis in the Crocodylia.
J Anat. 2016 Aug;229(2):292-301. doi: 10.1111/joa.12470. Epub 2016 Apr 7.

本文引用的文献

2
RESPIRATION IN EARLY TETRAPODS-THE FROG IS A RED HERRING.
Evolution. 1970 Dec;24(4):723-734. doi: 10.1111/j.1558-5646.1970.tb01807.x.
3
DEVONIAN AMPHIBIANS: DID THEY EXCRETE CARBON DIOXIDE VIA SKIN, GILLS, OR LUNGS?
Evolution. 1976 Jun;30(2):270-280. doi: 10.1111/j.1558-5646.1976.tb00909.x.
4
Metabolism, gas exchange, and acid-base balance of giant salamanders.
Biol Rev Camb Philos Soc. 2012 Aug;87(3):583-601. doi: 10.1111/j.1469-185X.2011.00211.x. Epub 2011 Dec 13.
5
Devonian climate change, breathing, and the origin of the tetrapod stem group.
Integr Comp Biol. 2007 Oct;47(4):510-23. doi: 10.1093/icb/icm055. Epub 2007 Aug 13.
6
The integumentary skeleton of tetrapods: origin, evolution, and development.
J Anat. 2009 Apr;214(4):441-64. doi: 10.1111/j.1469-7580.2008.01043.x.
7
Origin and evolution of the integumentary skeleton in non-tetrapod vertebrates.
J Anat. 2009 Apr;214(4):409-40. doi: 10.1111/j.1469-7580.2009.01046.x.
8
A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders.
Nature. 2008 May 22;453(7194):515-8. doi: 10.1038/nature06865.
10
Lactate uptake by skeletal bone in anoxic turtles, Trachemys scripta.
Comp Biochem Physiol A Mol Integr Physiol. 2007 Mar;146(3):299-304. doi: 10.1016/j.cbpa.2006.10.034. Epub 2006 Nov 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验