Suppr超能文献

在具有杂交检测应用的系统发育网络中基因树拓扑的概率。

The probability of a gene tree topology within a phylogenetic network with applications to hybridization detection.

机构信息

Department of Computer Science, Rice University, Houston, Texas, United States of America.

出版信息

PLoS Genet. 2012;8(4):e1002660. doi: 10.1371/journal.pgen.1002660. Epub 2012 Apr 19.

Abstract

Gene tree topologies have proven a powerful data source for various tasks, including species tree inference and species delimitation. Consequently, methods for computing probabilities of gene trees within species trees have been developed and widely used in probabilistic inference frameworks. All these methods assume an underlying multispecies coalescent model. However, when reticulate evolutionary events such as hybridization occur, these methods are inadequate, as they do not account for such events. Methods that account for both hybridization and deep coalescence in computing the probability of a gene tree topology currently exist for very limited cases. However, no such methods exist for general cases, owing primarily to the fact that it is currently unknown how to compute the probability of a gene tree topology within the branches of a phylogenetic network. Here we present a novel method for computing the probability of gene tree topologies on phylogenetic networks and demonstrate its application to the inference of hybridization in the presence of incomplete lineage sorting. We reanalyze a Saccharomyces species data set for which multiple analyses had converged on a species tree candidate. Using our method, though, we show that an evolutionary hypothesis involving hybridization in this group has better support than one of strict divergence. A similar reanalysis on a group of three Drosophila species shows that the data is consistent with hybridization. Further, using extensive simulation studies, we demonstrate the power of gene tree topologies at obtaining accurate estimates of branch lengths and hybridization probabilities of a given phylogenetic network. Finally, we discuss identifiability issues with detecting hybridization, particularly in cases that involve extinction or incomplete sampling of taxa.

摘要

基因树拓扑结构已被证明是各种任务(包括物种树推断和物种划分)的强大数据源。因此,已经开发并广泛应用了用于计算物种树内基因树概率的方法,这些方法假定存在基本的多物种合并模型。然而,当发生网状进化事件(如杂交)时,这些方法就不适用了,因为它们没有考虑到这些事件。目前存在一些用于计算基因树拓扑结构概率的方法,这些方法可以同时考虑杂交和深合并,但它们仅适用于非常有限的情况。然而,对于一般情况,还没有这样的方法,主要是因为目前尚不清楚如何计算分支的基因树拓扑结构的概率在系统发育网络中。在这里,我们提出了一种计算基因树拓扑结构概率的新方法,并演示了它在不完全谱系分选存在下推断杂交的应用。我们重新分析了一组 Saccharomyces 物种数据,其中多个分析已经收敛到一个候选物种树上。不过,使用我们的方法,我们表明该组中涉及杂交的进化假说比严格分歧的假说具有更好的支持。对三个果蝇物种的类似重新分析表明,数据与杂交一致。此外,通过广泛的模拟研究,我们展示了基因树拓扑结构在获得给定系统发育网络的分支长度和杂交概率的准确估计方面的强大功能。最后,我们讨论了检测杂交的可识别性问题,特别是在涉及灭绝或不完全采样的情况下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8923/3330115/bc273c1dbcbe/pgen.1002660.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验