Suppr超能文献

统一垂直进化和非垂直进化:基于随机 ARG 的框架。

Unifying vertical and nonvertical evolution: a stochastic ARG-based framework.

机构信息

Department of Biostatistics, UCLA School of Public Health, Los Angeles, CA 90095, USA.

出版信息

Syst Biol. 2010 Jan;59(1):27-41. doi: 10.1093/sysbio/syp076. Epub 2009 Nov 9.

Abstract

Evolutionary biologists have introduced numerous statistical approaches to explore nonvertical evolution, such as horizontal gene transfer, recombination, and genomic reassortment, through collections of Markov-dependent gene trees. These tree collections allow for inference of nonvertical evolution, but only indirectly, making findings difficult to interpret and models difficult to generalize. An alternative approach to explore nonvertical evolution relies on phylogenetic networks. These networks provide a framework to model nonvertical evolution but leave unanswered questions such as the statistical significance of specific nonvertical events. In this paper, we begin to correct the shortcomings of both approaches by introducing the "stochastic model for reassortment and transfer events" (SMARTIE) drawing upon ancestral recombination graphs (ARGs). ARGs are directed graphs that allow for formal probabilistic inference on vertical speciation events and nonvertical evolutionary events. We apply SMARTIE to phylogenetic data. Because of this, we can typically infer a single most probable ARG, avoiding coarse population dynamic summary statistics. In addition, a focus on phylogenetic data suggests novel probability distributions on ARGs. To make inference with our model, we develop a reversible jump Markov chain Monte Carlo sampler to approximate the posterior distribution of SMARTIE. Using the BEAST phylogenetic software as a foundation, the sampler employs a parallel computing approach that allows for inference on large-scale data sets. To demonstrate SMARTIE, we explore 2 separate phylogenetic applications, one involving pathogenic Leptospirochete and the other Saccharomyces.

摘要

进化生物学家已经引入了许多统计方法来探索非垂直进化,例如水平基因转移、重组和基因组重排,通过收集马尔可夫依赖的基因树。这些树集允许对非垂直进化进行推断,但只是间接的,使得结果难以解释,模型难以推广。探索非垂直进化的另一种方法依赖于系统发生网络。这些网络提供了一个建模非垂直进化的框架,但留下了一些未解决的问题,例如特定非垂直事件的统计显著性。在本文中,我们通过引入基于祖先重组图(ARG)的“重组和转移事件的随机模型”(SMARTIE)来纠正这两种方法的缺点。ARG 是有向图,允许对垂直物种形成事件和非垂直进化事件进行正式的概率推断。我们将 SMARTIE 应用于系统发生数据。因此,我们通常可以推断出单个最可能的 ARG,避免了粗略的种群动态汇总统计。此外,对系统发生数据的关注表明 ARG 上有新的概率分布。为了对我们的模型进行推断,我们开发了一个可逆跳跃马尔可夫链蒙特卡罗采样器来近似 SMARTIE 的后验分布。采样器以 BEAST 系统发生软件为基础,采用并行计算方法,允许对大规模数据集进行推断。为了演示 SMARTIE,我们探索了两个独立的系统发生应用,一个涉及致病性钩端螺旋体,另一个涉及酿酒酵母。

相似文献

1
Unifying vertical and nonvertical evolution: a stochastic ARG-based framework.
Syst Biol. 2010 Jan;59(1):27-41. doi: 10.1093/sysbio/syp076. Epub 2009 Nov 9.
2
On the inference of complex phylogenetic networks by Markov Chain Monte-Carlo.
PLoS Comput Biol. 2021 Sep 3;17(9):e1008380. doi: 10.1371/journal.pcbi.1008380. eCollection 2021 Sep.
3
Bayesian coestimation of phylogeny and sequence alignment.
BMC Bioinformatics. 2005 Apr 1;6:83. doi: 10.1186/1471-2105-6-83.
4
Bayesian Inference of Reticulate Phylogenies under the Multispecies Network Coalescent.
PLoS Genet. 2016 May 4;12(5):e1006006. doi: 10.1371/journal.pgen.1006006. eCollection 2016 May.
5
Bayesian inference of phylogeny and its impact on evolutionary biology.
Science. 2001 Dec 14;294(5550):2310-4. doi: 10.1126/science.1065889.
6
The NET-HMM approach: phylogenetic network inference by combining maximum likelihood and Hidden Markov Models.
J Bioinform Comput Biol. 2009 Aug;7(4):625-44. doi: 10.1142/s021972000900428x.
7
Modelling heterotachy in phylogenetic inference by reversible-jump Markov chain Monte Carlo.
Philos Trans R Soc Lond B Biol Sci. 2008 Dec 27;363(1512):3955-64. doi: 10.1098/rstb.2008.0178.
8
Guided tree topology proposals for Bayesian phylogenetic inference.
Syst Biol. 2012 Jan;61(1):1-11. doi: 10.1093/sysbio/syr074. Epub 2011 Aug 9.
9
Bayesian phylogenetic model selection using reversible jump Markov chain Monte Carlo.
Mol Biol Evol. 2004 Jun;21(6):1123-33. doi: 10.1093/molbev/msh123. Epub 2004 Mar 19.
10
Bayesian estimation of ancestral character states on phylogenies.
Syst Biol. 2004 Oct;53(5):673-84. doi: 10.1080/10635150490522232.

引用本文的文献

2
A Pervasive History of Gene Flow in Madagascar's True Lemurs (Genus ).
Genes (Basel). 2023 May 23;14(6):1130. doi: 10.3390/genes14061130.
3
A Bayesian approach to infer recombination patterns in coronaviruses.
Nat Commun. 2022 Jul 20;13(1):4186. doi: 10.1038/s41467-022-31749-8.
4
Current Methods for Recombination Detection in Bacteria.
Int J Mol Sci. 2022 Jun 2;23(11):6257. doi: 10.3390/ijms23116257.
5
Recombination patterns in coronaviruses.
bioRxiv. 2022 Feb 8:2021.04.28.441806. doi: 10.1101/2021.04.28.441806.
6
Gene Tree Discord, Simplex Plots, and Statistical Tests under the Coalescent.
Syst Biol. 2022 Jun 16;71(4):929-942. doi: 10.1093/sysbio/syab008.
7
Bayesian inference of reassortment networks reveals fitness benefits of reassortment in human influenza viruses.
Proc Natl Acad Sci U S A. 2020 Jul 21;117(29):17104-17111. doi: 10.1073/pnas.1918304117. Epub 2020 Jul 6.
8
PIQMEE: Bayesian Phylodynamic Method for Analysis of Large Data Sets with Duplicate Sequences.
Mol Biol Evol. 2020 Oct 1;37(10):3061-3075. doi: 10.1093/molbev/msaa136.
10
NANUQ: a method for inferring species networks from gene trees under the coalescent model.
Algorithms Mol Biol. 2019 Dec 6;14:24. doi: 10.1186/s13015-019-0159-2. eCollection 2019.

本文引用的文献

1
IMPORTANCE SAMPLING AND THE TWO-LOCUS MODEL WITH SUBDIVIDED POPULATION STRUCTURE.
Adv Appl Probab. 2008 Jun 1;40(2):473-500. doi: 10.1239/aap/1214950213.
2
Many-core algorithms for statistical phylogenetics.
Bioinformatics. 2009 Jun 1;25(11):1370-6. doi: 10.1093/bioinformatics/btp244. Epub 2009 Apr 15.
3
Simultaneous Bayesian gene tree reconstruction and reconciliation analysis.
Proc Natl Acad Sci U S A. 2009 Apr 7;106(14):5714-9. doi: 10.1073/pnas.0806251106. Epub 2009 Mar 19.
4
Drug resistance. A 'wimpy' flu strain mysteriously turns scary.
Science. 2009 Feb 27;323(5918):1162-3. doi: 10.1126/science.323.5918.1162.
5
Darwinian evolution in the light of genomics.
Nucleic Acids Res. 2009 Mar;37(4):1011-34. doi: 10.1093/nar/gkp089. Epub 2009 Feb 12.
7
Extended Newick: it is time for a standard representation of phylogenetic networks.
BMC Bioinformatics. 2008 Dec 15;9:532. doi: 10.1186/1471-2105-9-532.
8
Detecting hybrid speciation in the presence of incomplete lineage sorting using gene tree incongruence: a model.
Theor Popul Biol. 2009 Feb;75(1):35-45. doi: 10.1016/j.tpb.2008.10.004. Epub 2008 Nov 5.
9
Rapid evolution and the importance of recombination to the gastroenteric pathogen Campylobacter jejuni.
Mol Biol Evol. 2009 Feb;26(2):385-97. doi: 10.1093/molbev/msn264. Epub 2008 Nov 13.
10
Bayesian inference of fine-scale recombination rates using population genomic data.
Philos Trans R Soc Lond B Biol Sci. 2008 Dec 27;363(1512):3921-30. doi: 10.1098/rstb.2008.0172.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验