Suppr超能文献

代谢网络分析预测了美国食品药品监督管理局批准的针对一种被忽视热带病病原体的药物的疗效。

Metabolic network analysis predicts efficacy of FDA-approved drugs targeting the causative agent of a neglected tropical disease.

作者信息

Chavali Arvind K, Blazier Anna S, Tlaxca Jose L, Jensen Paul A, Pearson Richard D, Papin Jason A

机构信息

Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, USA.

出版信息

BMC Syst Biol. 2012 Apr 27;6:27. doi: 10.1186/1752-0509-6-27.

Abstract

BACKGROUND

Systems biology holds promise as a new approach to drug target identification and drug discovery against neglected tropical diseases. Genome-scale metabolic reconstructions, assembled from annotated genomes and a vast array of bioinformatics/biochemical resources, provide a framework for the interrogation of human pathogens and serve as a platform for generation of future experimental hypotheses. In this article, with the application of selection criteria for both Leishmania major targets (e.g. in silico gene lethality) and drugs (e.g. toxicity), a method (MetDP) to rationally focus on a subset of low-toxic Food and Drug Administration (FDA)-approved drugs is introduced.

RESULTS

This metabolic network-driven approach identified 15 L. major genes as high-priority targets, 8 high-priority synthetic lethal targets, and 254 FDA-approved drugs. Results were compared to previous literature findings and existing high-throughput screens. Halofantrine, an antimalarial agent that was prioritized using MetDP, showed noticeable antileishmanial activity when experimentally evaluated in vitro against L. major promastigotes. Furthermore, synthetic lethality predictions also aided in the prediction of superadditive drug combinations. For proof-of-concept, double-drug combinations were evaluated in vitro against L. major and four combinations involving the drug disulfiram that showed superadditivity are presented.

CONCLUSIONS

A direct metabolic network-driven method that incorporates single gene essentiality and synthetic lethality predictions is proposed that generates a set of high-priority L. major targets, which are in turn associated with a select number of FDA-approved drugs that are candidate antileishmanials. Additionally, selection of high-priority double-drug combinations might provide for an attractive and alternative avenue for drug discovery against leishmaniasis.

摘要

背景

系统生物学有望成为一种针对被忽视热带病进行药物靶点识别和药物研发的新方法。基于注释基因组和大量生物信息学/生化资源构建的基因组规模代谢重建,为研究人类病原体提供了一个框架,并作为生成未来实验假设的平台。在本文中,通过应用针对利什曼原虫主要靶点(如计算机模拟基因致死性)和药物(如毒性)的选择标准,引入了一种合理聚焦于低毒的美国食品药品监督管理局(FDA)批准药物子集的方法(MetDP)。

结果

这种代谢网络驱动的方法确定了15个利什曼原虫主要基因作为高优先级靶点、8个高优先级合成致死靶点以及254种FDA批准的药物。将结果与先前的文献发现和现有的高通量筛选进行了比较。使用MetDP确定为高优先级的抗疟药卤泛群,在体外针对利什曼原虫前鞭毛体进行实验评估时显示出显著的抗利什曼活性。此外,合成致死预测也有助于预测超加性药物组合。为了进行概念验证,在体外针对利什曼原虫评估了双药组合,并展示了四种涉及双硫仑且显示超加性的组合。

结论

提出了一种直接的代谢网络驱动方法,该方法纳入了单基因必需性和合成致死预测,生成了一组高优先级的利什曼原虫主要靶点,这些靶点又与一定数量的FDA批准的候选抗利什曼药物相关。此外,选择高优先级的双药组合可能为利什曼病的药物研发提供一条有吸引力的替代途径。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验