School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, China.
J Colloid Interface Sci. 2012 Jul 1;377(1):137-44. doi: 10.1016/j.jcis.2012.04.009. Epub 2012 Apr 11.
A new strategy is developed in this study to achieve thermo-responsive microspheres with fast response rates by designing a hierarchical phase-transition mechanism. The proposed thermo-responsive microspheres are composed of poly(N-isopropylacrylamide-co-acrylic acid) (PNA) microsphere matrixes and embedded poly(N-isopropylacrylamide) (PNIPAM) nano-gels, which have different volume phase-transition temperatures (VPTTs). The VPTT of PNIPAM nano-gels (VPTT(1)) is lower than that of PNA microsphere matrixes (VPTT(2)). Upon heating-up, the temperature increases across the VPTT(1) first and then the VPTT(2), as a result the PNIPAM nano-gels shrink earlier than the PNA microsphere matrixes. Upon cooling-down, the temperature decreases across the VPTT(2) first and then the VPTT(1), as a result the PNA microsphere matrixes swell earlier than the PNIPAM nano-gels. Consequently, large amounts of voids and channels form around the nano-gels inside the microsphere matrixes when the temperature changes across the range between VPTT(1) and VPTT(2), which are beneficial to the enhancement of water transport rate inside the microsphere matrixes. The experimental results show that, compared with normal homogeneous PNA (N-PNA) microspheres, the nano-gel containing PNA (C-PNA) microspheres exhibit remarkably fast response rate due to the hierarchical phase-transition mechanism attributed to different VPTT values of the embedded nano-gels and the microsphere matrixes.
本研究提出了一种新策略,通过设计分级相转变机制,制备出具有快速响应速率的温敏性微球。所提出的温敏性微球由聚(N-异丙基丙烯酰胺-co-丙烯酸)(PNA)微球基质和嵌入的聚(N-异丙基丙烯酰胺)(PNIPAM)纳米凝胶组成,它们具有不同的体积相转变温度(VPTT)。PNIPAM 纳米凝胶的 VPTT(VPTT(1))低于 PNA 微球基质的 VPTT(VPTT(2))。加热时,温度先升高到 VPTT(1),然后升高到 VPTT(2),导致 PNIPAM 纳米凝胶比 PNA 微球基质先收缩。冷却时,温度先降低到 VPTT(2),然后降低到 VPTT(1),导致 PNA 微球基质比 PNIPAM 纳米凝胶先溶胀。因此,当温度在 VPTT(1)和 VPTT(2)之间变化时,纳米凝胶周围会形成大量的空隙和通道,有利于提高微球基质内部的水传输速率。实验结果表明,与普通均相 PNA(N-PNA)微球相比,由于嵌入纳米凝胶和微球基质的不同 VPTT 值导致的分级相转变机制,含有纳米凝胶的 PNA(C-PNA)微球具有更快的响应速率。