Department of Physiology, University of Puerto Rico, Medical Sciences Campus, San Juan, Puerto Rico, USA.
Neuroscience. 2012 Aug 2;216:18-30. doi: 10.1016/j.neuroscience.2012.03.056. Epub 2012 Apr 24.
The ventral tegmental area (VTA) plays an important role in reward and motivational processes that facilitate the development of drug addiction. Glutamatergic inputs into the VTA contribute to dopamine (DA) neuronal activation related to reward and response-initiating effects in drug abuse. Previous investigations indicate that alpha1-adrenoreceptors (α1-ARs) are primarily localized at presynaptic elements in the ventral midbrain. Studies from several brain regions have shown that presynaptic α1-AR activation enhances glutamate release. Therefore, we hypothesized that glutamate released onto VTA-DA neurons is modulated by pre-synaptic α1-AR. Recordings were obtained from putative VTA-DA cells of male Sprague-Dawley rats (28-50 days postnatal) using voltage clamp techniques. Phenylephrine (10 μM) and methoxamine (80μM), both α1-AR agonists, increased AMPA receptor-mediated excitatory postsynaptic currents' (EPSCs) amplitude evoked by electrical stimulation of afferent fibers (p<0.05). This effect was blocked by the α1-AR antagonist prazosin (1 μM). Phenylephrine decreased the paired-pulse ratio (PPR) and increased spontaneous EPSCs' frequencies but not their amplitudes suggesting a presynaptic locus of action. No changes in miniature EPSCs (0.5μM, tetrodotoxin [TTX]) were observed after phenylephrine's application which suggests that α1-AR effect was action potential dependent. Normal extra- and intracellular Ca(2+) concentration seems necessary for the α1-AR effect since phenylephrine in low Ca(2+) artificial cerebrospinal fluid (ACSF) and depletion of intracellular Ca(2+) stores with thapsigargin (10 μM) failed to increase the AMPA EPSCs' amplitude. Chelerythrine (1μM, protein kinase C (PKC) inhibitor) but not Rp-cAMPS (11 μM, PKA inhibitor) blocked the α1-AR activation effect on AMPA EPSCs, indicating that a PKC intracellular pathway is required. These results demonstrated that presynaptic α1-AR activation modulates glutamatergic inputs that affect VTA-DA neuronal excitability. α1-AR action might be heterosynaptically localized at glutamatergic fibers terminating onto VTA-DA neurons. It is suggested that drug-induced changes in α1-AR could be part of the neuroadaptations occurring in the mesocorticolimbic circuitry during the addiction process.
腹侧被盖区 (VTA) 在奖赏和动机过程中发挥着重要作用,这些过程促进了药物成瘾的发展。谷氨酸能传入 VTA 有助于与滥用药物相关的多巴胺 (DA) 神经元激活的奖赏和反应启动效应。先前的研究表明,α1-肾上腺素能受体 (α1-AR) 主要定位于腹侧中脑的突触前成分。来自多个脑区的研究表明,突触前 α1-AR 激活增强了谷氨酸的释放。因此,我们假设谷氨酸释放到 VTA-DA 神经元上受到突触前 α1-AR 的调节。使用电压钳技术从雄性 Sprague-Dawley 大鼠 (出生后 28-50 天) 的 VTA-DA 细胞中获得记录。苯肾上腺素 (10 μM) 和甲氧胺 (80 μM),均为 α1-AR 激动剂,增加了传入纤维电刺激引起的 AMPA 受体介导的兴奋性突触后电流 (EPSC) 的幅度 (p<0.05)。这种作用被 α1-AR 拮抗剂哌唑嗪 (1 μM) 阻断。苯肾上腺素降低了成对脉冲比 (PPR),增加了自发 EPSC 的频率,但不增加其幅度,表明作用部位位于突触前。在苯肾上腺素应用后,未观察到微小 EPSC (0.5 μM,河豚毒素 [TTX]) 的变化,这表明 α1-AR 效应是动作电位依赖性的。正常的细胞外和细胞内 Ca(2+) 浓度似乎是 α1-AR 效应所必需的,因为在低 Ca(2+) 人工脑脊液 (ACSF) 中的苯肾上腺素和用 thapsigargin (10 μM) 耗尽细胞内 Ca(2+) 储存库均未能增加 AMPA EPSC 的幅度。Chelerythrine (1 μM,蛋白激酶 C (PKC) 抑制剂) 但不是 Rp-cAMPS (11 μM,PKA 抑制剂) 阻断了 α1-AR 对 AMPA EPSC 的激活作用,表明需要 PKC 细胞内途径。这些结果表明,突触前 α1-AR 激活调节谷氨酸能传入,影响 VTA-DA 神经元的兴奋性。α1-AR 作用可能在谷氨酸能纤维的异突触定位,这些纤维终止于 VTA-DA 神经元上。提示药物诱导的 α1-AR 变化可能是成瘾过程中中边缘皮质回路发生神经适应的一部分。