Suppr超能文献

在谷氨酸棒杆菌和黄色短杆菌中生产(L)-缬氨酸并最小化副产物的合成。

(L)-Valine production with minimization of by-products' synthesis in Corynebacterium glutamicum and Brevibacterium flavum.

机构信息

Laboratory of Renewable Energy and Gas Hydrate, Chinese Academy of Sciences, Guangzhou, 510640, People's Republic of China.

出版信息

Amino Acids. 2012 Dec;43(6):2301-11. doi: 10.1007/s00726-012-1308-9. Epub 2012 May 3.

Abstract

Corynebacterium glutamicum ATCC13032 and Brevibacterium flavum JV16 were engineered for L-valine production by over-expressing ilvEBN ( r ) C genes at 31 °C in 72 h fermentation. Different strategies were carried out to reduce the by-products' accumulation in L-valine fermentation and also to increase the availability of precursor for L-valine biosynthesis. The native promoter of ilvA of C. glutamicum was replaced with a weak promoter MPilvA (P-ilvAM1CG) to reduce the biosynthetic rate of L-isoleucine. Effect of different relative dissolved oxygen on L-valine production and by-products' formation was recorded, indicating that 15 % saturation may be the most appropriate relative dissolved oxygen for L-valine fermentation with almost no L-lactic acid and L-glutamate formed. To minimize L-alanine accumulation, alaT and/or avtA was inactivated in C. glutamicum and B. flavum, respectively. Compared to high concentration of L-alanine accumulated by alaT inactivated strains harboring ilvEBN ( r ) C genes, L-alanine concentration was reduced to 0.18 g/L by C. glutamicum ATCC13032MPilvA△avtA pDXW-8-ilvEBN ( r ) C, and 0.22 g/L by B. flavum JV16avtA::Cm pDXW-8-ilvEBN ( r ) C. Meanwhile, L-valine production and conversion efficiency were enhanced to 31.15 g/L and 0.173 g/g by C. glutamicum ATCC13032MPilvA△avtA pDXW-8-ilvEBN ( r ) C, 38.82 g/L and 0.252 g/g by B. flavum JV16avtA::Cm pDXW-8-ilvEBN ( r ) C. This study provides combined strategies to improve L-valine yield by minimization of by-products' production.

摘要

在 31°C 下发酵 72 小时,通过过表达 ilvEBN(r)C 基因,对 Corynebacterium glutamicum ATCC13032 和 Brevibacterium flavum JV16 进行工程改造以生产 L-缬氨酸。为了减少 L-缬氨酸发酵中副产物的积累,并增加 L-缬氨酸生物合成的前体可用性,采用了不同的策略。用弱启动子 MPilvA(P-ilvAM1CG)替换了 C. glutamicum 的 ilvA 天然启动子,以降低 L-异亮氨酸的生物合成速率。记录了不同相对溶解氧对 L-缬氨酸生产和副产物形成的影响,表明 15%饱和度可能是 L-缬氨酸发酵最适宜的相对溶解氧,几乎没有形成 L-乳酸和 L-谷氨酸。为了最大限度地减少 L-丙氨酸的积累,分别在 C. glutamicum 和 B. flavum 中失活 alaT 和/或 avtA。与含有 ilvEBN(r)C 基因的 alaT 失活菌株中积累的高浓度 L-丙氨酸相比,C. glutamicum ATCC13032MPilvA△avtA pDXW-8-ilvEBN(r)C 的 L-丙氨酸浓度降低到 0.18 g/L,B. flavum JV16avtA::Cm pDXW-8-ilvEBN(r)C 降低到 0.22 g/L。同时,通过 C. glutamicum ATCC13032MPilvA△avtA pDXW-8-ilvEBN(r)C,L-缬氨酸产量和转化率分别提高到 31.15 g/L 和 0.173 g/g,通过 B. flavum JV16avtA::Cm pDXW-8-ilvEBN(r)C 提高到 38.82 g/L 和 0.252 g/g。本研究提供了通过最小化副产物的产生来提高 L-缬氨酸产量的综合策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验