Hak Sovannara, Mansard Nicolas, Stasse Olivier, Laumond Jean Paul
Institut des Systèmes Intelligents et de Robotique, Paris VI University, 75005 Paris, France.
IEEE Trans Syst Man Cybern B Cybern. 2012 Dec;42(6):1524-37. doi: 10.1109/TSMCB.2012.2193614. Epub 2012 Apr 26.
Efficient methods to perform motion recognition have been developed using statistical tools. Those methods rely on primitive learning in a suitable space, for example, the latent space of the joint angle and/or adequate task spaces. Learned primitives are often sequential: A motion is segmented according to the time axis. When working with a humanoid robot, a motion can be decomposed into parallel subtasks. For example, in a waiter scenario, the robot has to keep some plates horizontal with one of its arms while placing a plate on the table with its free hand. Recognition can thus not be limited to one task per consecutive segment of time. The method presented in this paper takes advantage of the knowledge of what tasks the robot is able to do and how the motion is generated from this set of known controllers, to perform a reverse engineering of an observed motion. This analysis is intended to recognize parallel tasks that have been used to generate a motion. The method relies on the task-function formalism and the projection operation into the null space of a task to decouple the controllers. The approach is successfully applied on a real robot to disambiguate motion in different scenarios where two motions look similar but have different purposes.
利用统计工具已开发出执行运动识别的有效方法。这些方法依赖于在合适空间中的原始学习,例如关节角度的潜在空间和/或适当的任务空间。学习到的原语通常是顺序性的:运动根据时间轴进行分割。在与人形机器人协作时,一个运动可以分解为并行子任务。例如,在服务员场景中,机器人必须用一只手臂保持一些盘子水平,同时用另一只手将一个盘子放在桌子上。因此,识别不能局限于每个连续时间段的一个任务。本文提出的方法利用了机器人能够执行哪些任务以及如何从这组已知控制器生成运动的知识,对观察到的运动进行逆向工程。该分析旨在识别用于生成运动的并行任务。该方法依赖于任务 - 函数形式主义以及向任务零空间的投影操作来解耦控制器。该方法已成功应用于实际机器人,以在不同场景中消除运动歧义,在这些场景中两种运动看起来相似但目的不同。