IEEE Trans Cybern. 2015 Oct;45(10):2030-41. doi: 10.1109/TCYB.2014.2363664. Epub 2014 Oct 31.
This paper presents an integrated learning framework that enables humanoid robots to perform human-robot collaborative manipulation tasks. Specifically, a table-lifting task performed jointly by a human and a humanoid robot is chosen for validation purpose. The proposed framework is split into two phases: 1) phase I-learning to grasp the table and 2) phase II-learning to perform the manipulation task. An imitation learning approach is proposed for phase I. In phase II, the behavior of the robot is controlled by a combination of two types of controllers: 1) reactive and 2) proactive. The reactive controller lets the robot take a reactive control action to make the table horizontal. The proactive controller lets the robot take proactive actions based on human motion prediction. A measure of confidence of the prediction is also generated by the motion predictor. This confidence measure determines the leader/follower behavior of the robot. Hence, the robot can autonomously switch between the behaviors during the task. Finally, the performance of the human-robot team carrying out the collaborative manipulation task is experimentally evaluated on a platform consisting of a Nao humanoid robot and a Vicon motion capture system. Results show that the proposed framework can enable the robot to carry out the collaborative manipulation task successfully.
本文提出了一个集成学习框架,使仿人机器人能够执行人机协作操作任务。具体来说,选择了人类和仿人机器人共同执行的桌子提升任务来进行验证。所提出的框架分为两个阶段:1)阶段 I-学习抓取桌子,2)阶段 II-学习执行操作任务。提出了一种模仿学习方法用于阶段 I。在阶段 II 中,机器人的行为由两种类型的控制器组合控制:1)反应式和 2)主动式。反应式控制器让机器人采取反应式控制动作以使桌子保持水平。主动式控制器让机器人根据人类运动预测采取主动动作。运动预测器还生成预测置信度的度量。该置信度度量确定机器人的领导者/跟随者行为。因此,机器人可以在任务期间自主切换行为。最后,在由 Nao 仿人机器人和 Vicon 运动捕捉系统组成的平台上对执行协作操作任务的人机团队的性能进行了实验评估。结果表明,所提出的框架可以使机器人成功执行协作操作任务。