Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, UK.
J Phys Condens Matter. 2012 May 30;24(21):213201. doi: 10.1088/0953-8984/24/21/213201. Epub 2012 May 2.
The solid state exhibits a fascinating variety of phases, which can be stabilized by the variation of external parameters such as temperature, magnetic field and pressure. Until recently, numerical analysis of magnetic and/or orbital phases with collective excitations on a periodic lattice tended to be done on a case-by-case basis. Nowadays dynamical matrix diagonalization (DMD) has become an important and powerful standard method for the calculation of dispersive modes. The application of DMD to the interpretation of inelastic neutron scattering (INS) data on dispersive magnetic excitations is reviewed. A methodical survey of calculations employing spin-orbit and intermediate coupling schemes is illustrated by examples. These are taken from recent work on rare earth, actinide and transition metal compounds and demonstrate the application of the formalism developed.
固态表现出引人入胜的各种相,这些相可以通过温度、磁场和压力等外部参数的变化来稳定。直到最近,对周期性晶格上的集体激发的磁和/或轨道相的数值分析往往是逐个进行的。如今,动态矩阵对角化(DMD)已成为计算色散模式的重要且强大的标准方法。综述了 DMD 在解释色散磁激发的非弹性中子散射(INS)数据中的应用。通过实例说明了采用自旋轨道和中间耦合方案的计算的系统调查。这些取自最近关于稀土、锕系元素和过渡金属化合物的工作,展示了所开发的形式体系的应用。