Liu Li-Yu D, Chang Li-Yun, Kuo Wen-Hung, Hwa Hsiao-Lin, Shyu Ming-Kwang, Chang King-Jen, Hsieh Fon-Jou
Department of Agronomy, Biometry Division, National Taiwan University, Taipei, Taiwan.
Cancer Inform. 2012;11:113-37. doi: 10.4137/CIN.S8470. Epub 2012 Apr 19.
Aberrant transcriptional activities have been documented in breast cancers. Studies often find some transcription factors to be inappropriately regulated and enriched in certain pathological states. The promoter regions of most target genes have binding sites for their transcription factors. An ample of evidence supports their combinatorial effect on their shared target gene expressions. Here, we used a new statistic method, bivariate CID, to predict combinatorial interaction activity between ERα and a transcription factor (E2F1or GATA3 or ERRα) in regulating target gene expression via four regulatory mechanisms. We identified gene sets in three signal transduction pathways perturbed in breast tumors: cell cycle, VEGF, and PDGFRB. Bivariate network analysis revealed several target genes previously implicated in tumor angiogenesis are among the predicted shared targets, including VEGFA, PDGFRB. In summary, our analysis suggests the importance for the multivariate space of an inferred ERα transcriptional regulatory network in breast cancer diagnostic and therapeutic development.
乳腺癌中已记录到异常的转录活性。研究经常发现某些转录因子在特定病理状态下受到不当调控并富集。大多数靶基因的启动子区域具有其转录因子的结合位点。大量证据支持它们对共享靶基因表达的组合效应。在这里,我们使用了一种新的统计方法——双变量CID,来预测雌激素受体α(ERα)与转录因子(E2F1、GATA3或ERRα)之间通过四种调控机制调节靶基因表达时的组合相互作用活性。我们确定了在乳腺肿瘤中受到干扰的三条信号转导途径中的基因集:细胞周期、血管内皮生长因子(VEGF)和血小板衍生生长因子受体β(PDGFRB)。双变量网络分析显示,预测的共享靶标中包括一些先前与肿瘤血管生成有关的靶基因,如血管内皮生长因子A(VEGFA)、血小板衍生生长因子受体β(PDGFRB)。总之,我们的分析表明,推断的ERα转录调控网络的多变量空间在乳腺癌诊断和治疗发展中具有重要意义。