Suppr超能文献

机器学习揭示的原发性和转移性肿瘤中癌症相关基因的转录模式

Transcriptional patterns of cancer-related genes in primary and metastatic tumours revealed by machine learning.

作者信息

Keshavarz-Rahaghi Faeze, Pleasance Erin, Jones Steven J M

机构信息

Canada's Michael Smith Genome Sciences Centre at BC Cancer, Vancouver, BC, Canada.

Bioinformatics Graduate Program, University of British Columbia, Vancouver, BC, Canada.

出版信息

BMC Biol. 2025 Aug 7;23(1):246. doi: 10.1186/s12915-025-02339-z.

Abstract

BACKGROUND

A key to understanding cancer is to determine the impact on the cellular pathways caused by the repertoire of DNA changes accrued in a cancer cell. Exploring the interactions between genomic aberrations and the expressed transcriptome can not only improve our understanding of the disease but also identify potential therapeutic approaches.

RESULTS

Using random forest models, we successfully identified transcriptional patterns associated with the loss of wild-type activity in cancer-related genes across various tumour types. While genes like TP53 and CDKN2A exhibited unique pan-cancer transcriptional patterns, others like ATRX, BRAF, and NRAS showed tumour-type-specific expression patterns. We also observed that genes like AR and ERBB4 did not lead to strong detectable patterns in the transcriptome when disrupted. Our investigation has also led to the identification of genes highly associated with transcriptional patterns. For instance, DRG2 emerged as the top contributor in classification of ATRX alterations in lower-grade gliomas and was significantly downregulated in ATRX mutant tumours. Additionally, transcriptional features important in classification of PTEN aberrations, such as CDCA8, AURKA, and CDC20, were found to be closely related to PTEN function.

CONCLUSIONS

Our findings demonstrate the utility of machine learning in interpretation of cancer genomic data and provide new avenues for development of targeted therapies tailored to individual patients with cancer. Our analysis on the transcriptome revealed genes with expression levels strongly correlated with alterations in cancer-related genes. Additionally, we identified AURKA inhibitors as potential therapeutic option for tumours with alterations in tumour suppressors like FBXW7 or NSD1.

摘要

背景

理解癌症的关键在于确定癌细胞中积累的DNA变化对细胞通路的影响。探索基因组畸变与表达的转录组之间的相互作用,不仅可以增进我们对这种疾病的理解,还能识别潜在的治疗方法。

结果

使用随机森林模型,我们成功识别出了与各种肿瘤类型中癌症相关基因野生型活性丧失相关的转录模式。虽然像TP53和CDKN2A这样的基因表现出独特的泛癌转录模式,但像ATRX、BRAF和NRAS等其他基因则表现出肿瘤类型特异性的表达模式。我们还观察到,像AR和ERBB4这样的基因在被破坏时,在转录组中并未导致强烈的可检测模式。我们的研究还导致了与转录模式高度相关的基因的识别。例如,DRG2在低级别胶质瘤中ATRX改变的分类中成为主要贡献者,并且在ATRX突变肿瘤中显著下调。此外,在PTEN畸变分类中重要的转录特征,如CDCA8、AURKA和CDC20,被发现与PTEN功能密切相关。

结论

我们的研究结果证明了机器学习在解释癌症基因组数据方面的实用性,并为开发针对个体癌症患者的靶向治疗提供了新途径。我们对转录组的分析揭示了表达水平与癌症相关基因改变密切相关的基因。此外,我们将AURKA抑制剂确定为具有如FBXW7或NSD1等肿瘤抑制因子改变的肿瘤的潜在治疗选择。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验