Department of Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, México D.F, México.
FEMS Microbiol Ecol. 2012 Oct;82(1):37-49. doi: 10.1111/j.1574-6941.2012.01405.x. Epub 2012 May 25.
Metagenomics holds the promise of greatly advancing the study of diversity in natural communities, but novel theoretical and methodological approaches must first be developed and adjusted for these data sets. We evaluated widely used macroecological metrics of taxonomic diversity on a simulated set of metagenomic samples, using phylogenetically meaningful protein-coding genes as ecological proxies. To our knowledge, this is the first approach of this kind to evaluate taxonomic diversity metrics derived from metagenomic data sets. We demonstrate that abundance matrices derived from protein-coding marker genes reproduce more faithfully the structure of the original community than those derived from SSU-rRNA gene. We also found that the most commonly used diversity metrics are biased estimators of community structure and differ significantly from their corresponding real parameters and that these biases are most likely caused by insufficient sampling and differences in community phylogenetic composition. Our results suggest that the ranking of samples using multidimensional metrics makes a good qualitative alternative for contrasting community structure and that these comparisons can be greatly improved with the incorporation of metrics for both community structure and phylogenetic diversity. These findings will help to achieve a standardized framework for community diversity comparisons derived from metagenomic data sets.
宏基因组学有望极大地推动对自然群落多样性的研究,但必须首先开发新的理论和方法,并对这些数据集进行调整。我们使用具有系统发育意义的蛋白质编码基因作为生态替代物,在模拟的一组宏基因组样本上评估了广泛使用的分类多样性宏观生态学指标。据我们所知,这是首次采用这种方法来评估源自宏基因组数据集的分类多样性指标。我们证明,源自蛋白质编码标记基因的丰度矩阵比源自 SSU-rRNA 基因的丰度矩阵更真实地再现了原始群落的结构。我们还发现,最常用的多样性指标是群落结构的有偏估计量,与它们对应的真实参数有很大差异,并且这些偏差很可能是由于采样不足和群落系统发育组成的差异造成的。我们的结果表明,使用多维指标对样本进行排名是对比群落结构的一种很好的定性替代方法,并且通过纳入用于群落结构和系统发育多样性的指标,可以大大改善这些比较。这些发现将有助于为源自宏基因组数据集的群落多样性比较建立一个标准化框架。