Inorganic, Isotope and Actinide Chemistry Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.
Inorg Chem. 2012 May 21;51(10):5728-36. doi: 10.1021/ic300179d. Epub 2012 May 3.
High-purity syntheses are reported for a series of first, second, and third row transition metal and actinide hexahalide compounds with equivalent, noncoordinating countercations: (Ph(4)P)(2)TiF(6) (1) and (Ph(4)P)(2)MCl(6) (M = Ti, Zr, Hf, Th, U, Np, Pu; 2-8). While a reaction between MCl(4) (M = Zr, Hf, U) and 2 equiv of Ph(4)PCl provided 3, 4, and 6, syntheses for 1, 2, 5, 7, and 8 required multistep procedures. For example, a cation exchange reaction with Ph(4)PCl and (NH(4))(2)TiF(6) produced 1, which was used in a subsequent anion exchange reaction with Me(3)SiCl to synthesize 2. For 5, 7, and 8, synthetic routes starting with aqueous actinide precursors were developed that circumvented any need for anhydrous Th, Np, or Pu starting materials. The solid-state geometries, bond distances and angles for isolated ThCl(6)(2-), NpCl(6)(2-), and PuCl(6)(2-) anions with noncoordinating counter cations were determined for the first time in the X-ray crystal structures of 5, 7, and 8. Solution phase and solid-state diffuse reflectance spectra were also used to characterize 7 and 8. Transition metal MCl(6)(2-) anions showed the anticipated increase in M-Cl bond distances when changing from M = Ti to Zr, and then a decrease from Zr to Hf. The M-Cl bond distances also decreased from M = Th to U, Np, and Pu. Ionic radii can be used to predict average M-Cl bond distances with reasonable accuracy, which supports a principally ionic model of bonding for each of the (Ph(4)P)(2)MCl(6) complexes.
一系列第一、第二和第三过渡金属和锕系元素六卤化物化合物与等效的、非配位抗衡阳离子的高纯度合成被报道:(Ph(4)P)(2)TiF(6) (1) 和 (Ph(4)P)(2)MCl(6) (M = Ti、Zr、Hf、Th、U、Np、Pu;2-8)。当 MCl(4) (M = Zr、Hf、U)与 2 当量的 Ph(4)PCl 反应时,得到了 3、4 和 6,而对于 1、2、5、7 和 8 的合成则需要多步程序。例如,与 Ph(4)PCl 和 (NH(4))(2)TiF(6)的阳离子交换反应产生了 1,它随后与 Me(3)SiCl 进行阴离子交换反应合成了 2。对于 5、7 和 8,开发了从水合锕系元素前体开始的合成路线,避免了对无水 Th、Np 或 Pu 起始材料的任何需求。ThCl(6)(2-)、NpCl(6)(2-)和 PuCl(6)(2-)阴离子与非配位抗衡阳离子的固态几何形状、键距和角度首次在 5、7 和 8 的 X 射线晶体结构中确定。溶液相和固态漫反射光谱也用于表征 7 和 8。过渡金属 MCl(6)(2-)阴离子的 M-Cl 键距随着从 M = Ti 变为 Zr 而增加,然后从 Zr 变为 Hf 而减小。M-Cl 键距也从 M = Th 变为 U、Np 和 Pu 而减小。离子半径可用于以合理的精度预测平均 M-Cl 键距,这支持了每个 (Ph(4)P)(2)MCl(6)配合物的主要离子键模型。