Suppr超能文献

线粒体呼吸复合体中血红素中心的结构、功能及组装

Structure, function, and assembly of heme centers in mitochondrial respiratory complexes.

作者信息

Kim Hyung J, Khalimonchuk Oleh, Smith Pamela M, Winge Dennis R

机构信息

University of Utah Health Sciences Center, Department of Medicine, Salt Lake City, UT 84132, USA.

出版信息

Biochim Biophys Acta. 2012 Sep;1823(9):1604-16. doi: 10.1016/j.bbamcr.2012.04.008. Epub 2012 Apr 24.

Abstract

The sequential flow of electrons in the respiratory chain, from a low reduction potential substrate to O(2), is mediated by protein-bound redox cofactors. In mitochondria, hemes-together with flavin, iron-sulfur, and copper cofactors-mediate this multi-electron transfer. Hemes, in three different forms, are used as a protein-bound prosthetic group in succinate dehydrogenase (complex II), in bc(1) complex (complex III) and in cytochrome c oxidase (complex IV). The exact function of heme b in complex II is still unclear, and lags behind in operational detail that is available for the hemes of complex III and IV. The two b hemes of complex III participate in the unique bifurcation of electron flow from the oxidation of ubiquinol, while heme c of the cytochrome c subunit, Cyt1, transfers these electrons to the peripheral cytochrome c. The unique heme a(3), with Cu(B), form a catalytic site in complex IV that binds and reduces molecular oxygen. In addition to providing catalytic and electron transfer operations, hemes also serve a critical role in the assembly of these respiratory complexes, which is just beginning to be understood. In the absence of heme, the assembly of complex II is impaired, especially in mammalian cells. In complex III, a covalent attachment of the heme to apo-Cyt1 is a prerequisite for the complete assembly of bc(1), whereas in complex IV, heme a is required for the proper folding of the Cox 1 subunit and subsequent assembly. In this review, we provide further details of the aforementioned processes with respect to the hemes of the mitochondrial respiratory complexes. This article is part of a Special Issue entitled: Cell Biology of Metals.

摘要

电子在呼吸链中从低还原电位底物到O₂的顺序流动由蛋白质结合的氧化还原辅因子介导。在线粒体中,血红素与黄素、铁硫和铜辅因子一起介导这种多电子转移。血红素以三种不同形式用作琥珀酸脱氢酶(复合体II)、bc₁复合体(复合体III)和细胞色素c氧化酶(复合体IV)中蛋白质结合的辅基。复合体II中血红素b的确切功能仍不清楚,在操作细节方面落后于复合体III和IV中的血红素。复合体III的两个b血红素参与泛醇氧化过程中独特的电子流分支,而细胞色素c亚基Cyt1的血红素c将这些电子传递给外周细胞色素c。独特的血红素a₃与Cu(B)在复合体IV中形成一个催化位点,结合并还原分子氧。除了提供催化和电子转移作用外,血红素在这些呼吸复合体的组装中也起着关键作用,这一点才刚刚开始被了解。在没有血红素的情况下,复合体II的组装会受损,尤其是在哺乳动物细胞中。在复合体III中,血红素与脱辅基Cyt1的共价连接是bc₁完全组装的先决条件,而在复合体IV中,血红素a是Cox 1亚基正确折叠及后续组装所必需的。在这篇综述中,我们提供了关于线粒体呼吸复合体中血红素上述过程的更多细节。本文是名为:金属细胞生物学的特刊的一部分。

相似文献

1
Structure, function, and assembly of heme centers in mitochondrial respiratory complexes.
Biochim Biophys Acta. 2012 Sep;1823(9):1604-16. doi: 10.1016/j.bbamcr.2012.04.008. Epub 2012 Apr 24.
3
Electron sweep across four b-hemes of cytochrome bc revealed by unusual paramagnetic properties of the Q semiquinone intermediate.
Biochim Biophys Acta Bioenerg. 2018 Jun;1859(6):459-469. doi: 10.1016/j.bbabio.2018.03.010. Epub 2018 Mar 27.
4
Tuning of Hemes b Equilibrium Redox Potential Is Not Required for Cross-Membrane Electron Transfer.
J Biol Chem. 2016 Mar 25;291(13):6872-81. doi: 10.1074/jbc.M115.712307. Epub 2016 Feb 8.
5
The mechanism of ubihydroquinone oxidation at the Qo-site of the cytochrome bc1 complex.
Biochim Biophys Acta. 2013 Nov-Dec;1827(11-12):1362-77. doi: 10.1016/j.bbabio.2013.01.009. Epub 2013 Feb 8.
8
Design and use of photoactive ruthenium complexes to study electron transfer within cytochrome bc1 and from cytochrome bc1 to cytochrome c.
Biochim Biophys Acta. 2013 Nov-Dec;1827(11-12):1309-19. doi: 10.1016/j.bbabio.2012.09.002. Epub 2012 Sep 15.
9
Mutations in cytochrome b that affect kinetics of the electron transfer reactions at center N in the yeast cytochrome bc1 complex.
Biochim Biophys Acta. 2008 Mar;1777(3):239-49. doi: 10.1016/j.bbabio.2007.08.005. Epub 2007 Sep 6.
10
Anti-cooperative oxidation of ubiquinol by the yeast cytochrome bc1 complex.
J Biol Chem. 2004 Apr 9;279(15):15040-9. doi: 10.1074/jbc.M400193200. Epub 2004 Feb 3.

引用本文的文献

3
Campylobacter jejuni regulates cell cycle progression to potentiate host cell invasion.
Cell Commun Signal. 2025 Jul 16;23(1):343. doi: 10.1186/s12964-025-02348-z.
5
Pneumococcal HO Reshapes Mitochondrial Function and Reprograms Host Cell Metabolism.
bioRxiv. 2025 May 22:2025.05.22.655446. doi: 10.1101/2025.05.22.655446.
6
Mechanisms of heme transport in the mitochondria.
Biochem Soc Trans. 2025 Jun 30;53(3):603-614. doi: 10.1042/BST20253013.
8
Iron-based microbial interactions: the role of iron metabolism in the cheese ecosystem.
J Bacteriol. 2025 May 22;207(5):e0053924. doi: 10.1128/jb.00539-24. Epub 2025 Apr 16.
10
Heme metabolism mediates RANKL-induced osteoclastogenesis via mitochondrial oxidative phosphorylation.
J Bone Miner Res. 2025 May 24;40(5):639-655. doi: 10.1093/jbmr/zjaf040.

本文引用的文献

1
Selective Oma1 protease-mediated proteolysis of Cox1 subunit of cytochrome oxidase in assembly mutants.
J Biol Chem. 2012 Mar 2;287(10):7289-300. doi: 10.1074/jbc.M111.313148. Epub 2012 Jan 4.
3
Biogenesis and assembly of eukaryotic cytochrome c oxidase catalytic core.
Biochim Biophys Acta. 2012 Jun;1817(6):883-97. doi: 10.1016/j.bbabio.2011.09.005. Epub 2011 Sep 16.
4
Proton-pumping mechanism of cytochrome c oxidase: a kinetic master-equation approach.
Biochim Biophys Acta. 2012 Apr;1817(4):526-36. doi: 10.1016/j.bbabio.2011.09.004. Epub 2011 Sep 16.
5
Molecular chaperones in protein folding and proteostasis.
Nature. 2011 Jul 20;475(7356):324-32. doi: 10.1038/nature10317.
7
Alternative initial proton acceptors for the D pathway of Rhodobacter sphaeroides cytochrome c oxidase.
Biochemistry. 2011 Apr 12;50(14):2820-8. doi: 10.1021/bi102002v. Epub 2011 Mar 21.
8
Inventory control: cytochrome c oxidase assembly regulates mitochondrial translation.
Nat Rev Mol Cell Biol. 2011 Jan;12(1):14-20. doi: 10.1038/nrm3029.
9
Proton-coupled electron transfer in cytochrome oxidase.
Chem Rev. 2010 Dec 8;110(12):7062-81. doi: 10.1021/cr1002003. Epub 2010 Nov 5.
10
c-type cytochrome assembly in Saccharomyces cerevisiae: a key residue for apocytochrome c1/lyase interaction.
Genetics. 2010 Oct;186(2):561-71. doi: 10.1534/genetics.110.120022. Epub 2010 Aug 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验