Suppr超能文献

基于三聚氰胺的多孔共价有机骨架的高荧光纳米粒子的微波辅助合成及其用于痕量检测硝基芳香族爆炸物。

Microwave-assisted synthesis of highly fluorescent nanoparticles of a melamine-based porous covalent organic framework for trace-level detection of nitroaromatic explosives.

机构信息

Laboratory of Advanced Porous Materials, School of Chemistry and Chemical Engineering, Anhui University, Hefei 230039, China.

出版信息

J Hazard Mater. 2012 Jun 30;221-222:147-54. doi: 10.1016/j.jhazmat.2012.04.025. Epub 2012 Apr 19.

Abstract

Covalent organic frameworks (COFs) are a new generation of porous materials constructed from light elements linked by strong covalent bonds. Herein we present rapid preparation of highly fluorescent nanoparticles of a new type of COF, i.e. melamine-based porous polymeric network SNW-1, by a microwave-assisted synthesis route. Although the synthesis of SNW-1 has to be carried out at 180°C for 3d under conventional reflux conditions, SNW-1 nanoparticles could be obtained in 6h by using such a microwave-assisted method. The results obtained have clearly demonstrated that microwave-assisted synthesis is a simple yet highly efficient approach to nanoscale COFs or other porous polymeric materials. Remarkably, the as-synthesized SNW-1 nanoparticles exhibit extremely high sensitivity and selectivity, as well as fast response to nitroaromatic explosives such as 2,4,6-trinitrotoluene (TNT), 2,4,6-trinitrophenylmethylnitramine (Tetryl) and picric acid (PA) without interference by common organic solvents, which is due to the nanoscaled size and unique hierarchical porosity of such fluorescence-based sensing material.

摘要

共价有机骨架(COFs)是由轻元素通过强共价键连接而成的新一代多孔材料。在此,我们通过微波辅助合成路线快速制备了一种新型 COF,即三聚氰胺基多孔聚合网络 SNW-1 的高荧光纳米粒子。尽管 SNW-1 的合成必须在 180°C 下回流 3 天,但通过这种微波辅助方法可以在 6 小时内得到 SNW-1 纳米粒子。结果清楚地表明,微波辅助合成是一种简单而高效的制备纳米 COF 或其他多孔聚合物材料的方法。值得注意的是,所合成的 SNW-1 纳米粒子对硝基芳香族爆炸物如 2,4,6-三硝基甲苯(TNT)、2,4,6-三硝基苯甲基硝胺(Tetryl)和苦味酸(PA)具有极高的灵敏度和选择性,以及快速的响应,而不受常见有机溶剂的干扰,这是由于这种基于荧光的传感材料的纳米尺寸和独特的分级多孔性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验