Liu Huijuan, Yin Li, Board Philip G, Han Xiao, Fan Zhenlin, Fang Jingqi, Lu Zeyuan, Zhang Yini, Wei Jingyan
College of Pharmaceutical Science, Jilin University, Changchun 130021, PR China.
Protein Expr Purif. 2012 Jul;84(1):59-63. doi: 10.1016/j.pep.2012.04.015. Epub 2012 Apr 27.
Glutathione peroxidase (GPX) is a crucial antioxidant selenocysteine (Sec) containing enzyme which plays a significant role in protecting cells against oxidative damage by catalyzing the reduction of hydroperoxides with glutathione (GSH). Several methods have been used to generate GPX mimics, however, only a few of these methods involved genetic engineering and none of them have achieved specific site-directed incorporation of Sec without other modifications, which has hampered further structure-function studies. Here, we report for the first time the conversion of human glutathione transferase Zeta (hGSTZ1-1) into seleno-hGSTZ1-1 by means of genetic engineering in eukaryotes. Fluorescence microscopy images of the expression of Seleno-GST-green fluorescent protein chimaera indicated that we successfully achieved the read-through of the UGA codon to specifically incorporate Sec. Therefore, we achieved the conversion of human glutathione transferase Zeta (hGSTZ1-1) into a seleno-GST (seleno-hGSTZ1-1) by means of genetic engineering in eukaryotes. These results show that recombinant selenoproteins with incorporation of specific selenocysteine residues may be heterologously produced in eukaryotes by using a Sec insertion sequence in the 3' untranslated region (3'-UTR) of the mRNA, and the recombinant selenoproteins is single catalytically active residue and well-characterized structure. In this case a novel GPX activity of 2050±225 U/μmol was introduced into hGSTZ1-1 by substitution of serine 15 by Sec 15. This result will lay a foundation for preparing much smaller GPX mimics with higher activity.
谷胱甘肽过氧化物酶(GPX)是一种关键的抗氧化含硒半胱氨酸(Sec)酶,它通过催化谷胱甘肽(GSH)还原氢过氧化物,在保护细胞免受氧化损伤方面发挥着重要作用。已经使用了几种方法来生成GPX模拟物,然而,这些方法中只有少数涉及基因工程,并且没有一种方法能够在没有其他修饰的情况下实现Sec的特定位点定向掺入,这阻碍了进一步的结构-功能研究。在这里,我们首次报告了通过真核生物中的基因工程将人谷胱甘肽转移酶Zeta(hGSTZ1-1)转化为硒代-hGSTZ1-1。硒代-GST-绿色荧光蛋白嵌合体表达的荧光显微镜图像表明,我们成功实现了UGA密码子的通读以特异性掺入Sec。因此,我们通过真核生物中的基因工程将人谷胱甘肽转移酶Zeta(hGSTZ1-1)转化为硒代-GST(硒代-hGSTZ1-1)。这些结果表明,通过在mRNA的3'非翻译区(3'-UTR)中使用Sec插入序列,可以在真核生物中异源生产掺入特定硒半胱氨酸残基的重组硒蛋白,并且该重组硒蛋白具有单一催化活性残基和特征明确的结构。在这种情况下,通过将丝氨酸15替换为Sec 15,将2050±225 U/μmol的新型GPX活性引入hGSTZ1-1。这一结果将为制备活性更高的更小的GPX模拟物奠定基础。